fix hull mass data calculation and make it more robust, bugfixes
This commit is contained in:
@ -118,15 +118,12 @@ struct b3Quat
|
||||
*axis = s * v;
|
||||
}
|
||||
|
||||
*angle = 0.0f;
|
||||
// cosine check
|
||||
if (w >= -1.0f && w <= 1.0f)
|
||||
{
|
||||
// half angle
|
||||
float32 theta = acos(w);
|
||||
// full angle
|
||||
*angle = 2.0f * theta;
|
||||
}
|
||||
float32 cosine = b3Clamp(w, -1.0f, 1.0f);
|
||||
// half angle
|
||||
float32 theta = acos(cosine);
|
||||
// full angle
|
||||
*angle = 2.0f * theta;
|
||||
}
|
||||
|
||||
float32 x, y, z, w;
|
||||
|
@ -112,6 +112,7 @@ public:
|
||||
|
||||
// Set the body world transform from a position, axis of rotation and an angle
|
||||
// of rotation about the axis.
|
||||
// The transform defines a reference frame for this body world center of mass.
|
||||
// However, manipulating a body transform during the simulation may cause non-physical behaviour.
|
||||
void SetTransform(const b3Vec3& position, const b3Vec3& axis, float32 angle);
|
||||
|
||||
@ -185,13 +186,16 @@ public:
|
||||
// Set this body mass data.
|
||||
void SetMassData(const b3MassData* data);
|
||||
|
||||
// Get the linear kinetic energy of the body in Joules (kilogram-meters squared per second squared).
|
||||
// Recalculate this body mass data based on all of its shapes.
|
||||
void ResetMass();
|
||||
|
||||
// Get the linear kinetic energy of the body in Joules (kg m^2/s^2).
|
||||
float32 GetLinearEnergy() const;
|
||||
|
||||
// Get the angular kinetic energy of the body in Joules (kilogram-meters squared per second squared).
|
||||
// Get the angular kinetic energy of the body in Joules (kg m^2/s^2).
|
||||
float32 GetAngularEnergy() const;
|
||||
|
||||
// Get the total kinetic energy of the body in Joules (kilogram-meters squared per second squared).
|
||||
// Get the total kinetic energy of the body in Joules (kg m^2/s^2).
|
||||
float32 GetEnergy() const;
|
||||
|
||||
// Transform a vector to the local space of this body.
|
||||
@ -257,16 +261,8 @@ private:
|
||||
// Destroy all joints connected to the body.
|
||||
void DestroyJoints();
|
||||
|
||||
// Recalculate the mass of the body based on the shapes associated
|
||||
// with it.
|
||||
void ResetMass();
|
||||
|
||||
// Synchronize this body transform with its world
|
||||
// center of mass and orientation.
|
||||
void SynchronizeTransform();
|
||||
|
||||
// Synchronize this body shape AABBs with the synchronized transform.
|
||||
void SynchronizeShapes();
|
||||
void SynchronizeTransform();
|
||||
|
||||
// Check if this body should collide with another.
|
||||
bool ShouldCollide(const b3Body* other) const;
|
||||
@ -306,7 +302,10 @@ private:
|
||||
b3Vec3 m_linearVelocity;
|
||||
b3Vec3 m_angularVelocity;
|
||||
|
||||
// Motion proxy for CCD.
|
||||
b3Sweep m_sweep;
|
||||
|
||||
// The body origin transform.
|
||||
b3Transform m_xf;
|
||||
|
||||
// The parent world of this body.
|
||||
|
@ -30,8 +30,8 @@ public :
|
||||
~b3HullShape();
|
||||
|
||||
void Swap(const b3HullShape& other);
|
||||
|
||||
void ComputeMass(b3MassData* data, float32 density) const;
|
||||
|
||||
void ComputeMass(b3MassData* data, float32 density) const;
|
||||
|
||||
void ComputeAABB(b3AABB3* aabb, const b3Transform& xf) const;
|
||||
|
||||
|
@ -51,22 +51,42 @@ enum b3LimitState
|
||||
e_equalLimits
|
||||
};
|
||||
|
||||
// Move an inertia tensor from the its current center
|
||||
// to another.
|
||||
inline b3Mat33 b3MoveToCOM(const b3Mat33& inertia, float32 mass, const b3Vec3& center)
|
||||
// Return the Steiner's matrix given the displacement vector from the old
|
||||
// center of rotation to the new center of rotation.
|
||||
// The result equals to transpose( skew(v) ) * skew(v) or diagonal(v^2) - outer(v)
|
||||
inline b3Mat33 b3Steiner(const b3Vec3& v)
|
||||
{
|
||||
// Paralell Axis Theorem
|
||||
// J = I + m * dot(r, r) * E - outer(r, r)
|
||||
// where
|
||||
// I - inertia about the center of mass
|
||||
// m - mass
|
||||
// E - identity 3x3
|
||||
// r - displacement vector from the current com to the new com
|
||||
// J - inertia tensor at the new center of rotation
|
||||
float32 dd = b3Dot(center, center);
|
||||
b3Mat33 A = b3Diagonal(mass * dd);
|
||||
b3Mat33 B = b3Outer(center, center);
|
||||
return inertia + A - B;
|
||||
float32 xx = v.x * v.x;
|
||||
float32 yy = v.y * v.y;
|
||||
float32 zz = v.z * v.z;
|
||||
|
||||
b3Mat33 S;
|
||||
|
||||
S.x.x = yy + zz;
|
||||
S.x.y = -v.x * v.y;
|
||||
S.x.z = -v.x * v.z;
|
||||
|
||||
S.y.x = S.x.y;
|
||||
S.y.y = xx + zz;
|
||||
S.y.z = -v.y * v.z;
|
||||
|
||||
S.z.x = S.x.z;
|
||||
S.z.y = S.y.z;
|
||||
S.z.z = xx + yy;
|
||||
|
||||
return S;
|
||||
}
|
||||
|
||||
// Move an inertia tensor given the displacement vector from the center of mass to the translated origin.
|
||||
inline b3Mat33 b3MoveToOrigin(const b3Mat33& I, const b3Vec3& v)
|
||||
{
|
||||
return I + b3Steiner(v);
|
||||
}
|
||||
|
||||
// Move an inertia tensor given the displacement vector from the origin to the translated center of mass.
|
||||
inline b3Mat33 b3MoveToCOM(const b3Mat33& I, const b3Vec3& v)
|
||||
{
|
||||
return I - b3Steiner(v);
|
||||
}
|
||||
|
||||
// Compute the inertia matrix of a body measured in
|
||||
|
Reference in New Issue
Block a user