add baraff and witkin's mass-spring-based cloth

This commit is contained in:
Irlan 2018-03-23 15:29:47 -03:00
parent cf92ff3339
commit 2cbf9b56ed
4 changed files with 970 additions and 0 deletions

View File

@ -0,0 +1,91 @@
/*
* Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SPRING_CLOTH_TESH_H
#define SPRING_CLOTH_TESH_H
extern DebugDraw* g_debugDraw;
extern Camera g_camera;
extern Settings g_settings;
class SpringCloth : public Test
{
public:
SpringCloth()
{
g_camera.m_zoom = 25.0f;
b3SpringClothDef def;
def.allocator = &m_clothAllocator;
def.mesh = m_meshes + e_clothMesh;
def.density = 0.2f;
def.ks = 100000.0f;
def.kd = 100.0f;
def.gravity.Set(2.5f, 5.0f, -10.0f);
m_cloth.Initialize(def);
m_aabb.m_lower.Set(-5.0f, -1.0f, -6.0f);
m_aabb.m_upper.Set(5.0f, 1.0f, -4.0f);
for (u32 i = 0; i < def.mesh->vertexCount; ++i)
{
if (m_aabb.Contains(def.mesh->vertices[i]))
{
m_cloth.SetType(i, e_staticMass);
}
}
}
void Step()
{
float32 dt = g_settings.hertz > 0.0f ? 1.0f / g_settings.hertz : 0.0f;
if (g_settings.pause)
{
if (g_settings.singleStep)
{
g_settings.singleStep = false;
}
else
{
dt = 0.0f;
}
}
m_cloth.Step(dt);
m_cloth.Draw(g_debugDraw);
b3SpringClothStep step = m_cloth.GetStep();
char text[256];
sprintf(text, "Iterations = %u", step.iterations);
g_debugDraw->DrawString(text, b3Color_white);
}
static Test* Create()
{
return new SpringCloth();
}
b3StackAllocator m_clothAllocator;
b3SpringCloth m_cloth;
b3AABB3 m_aabb;
};
#endif

View File

@ -56,6 +56,7 @@
#include <bounce/dynamics/rope/rope.h>
#include <bounce/dynamics/cloth/cloth.h>
#include <bounce/dynamics/cloth/spring_cloth.h>
#include <bounce/dynamics/body.h>
//#include <bounce/dynamics/tree/joints/tree_weld_joint.h>

View File

@ -0,0 +1,180 @@
/*
* Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_SPRING_CLOTH_H
#define B3_SPRING_CLOTH_H
#include <bounce/common/math/mat33.h>
class b3StackAllocator;
class b3Draw;
struct b3Mesh;
struct b3SpringClothDef
{
b3SpringClothDef()
{
allocator = nullptr;
mesh = nullptr;
density = 0.0f;
ks = 0.0f;
kb = 0.0f;
kd = 0.0f;
gravity.SetZero();
}
// Stack allocator
b3StackAllocator* allocator;
// Cloth mesh
b3Mesh* mesh;
// Cloth density in kg/m^2
float32 density;
// Streching stiffness
float32 ks;
// Bending stiffness
float32 kb;
// Damping stiffness
float32 kd;
// Force due to gravity
b3Vec3 gravity;
};
struct b3Spring
{
// Mass 1
u32 i1;
// Mass 2
u32 i2;
// Rest length
float32 L0;
// Structural stiffness
float32 ks;
// Damping stiffness
float32 kd;
};
// Static masses have zero mass and velocity, and therefore they can't move.
// Dynamic masses have non-zero mass and can move due to internal and external forces.
enum b3MassType
{
e_staticMass,
e_dynamicMass
};
// Time step statistics
struct b3SpringClothStep
{
u32 iterations;
};
// This class implements a cloth. It treats cloth as a collection
// of masses connected by springs.
// Large time steps can be taken.
// If accuracy and stability are required, not performance,
// you can use this class instead of using b3Cloth.
class b3SpringCloth
{
public:
b3SpringCloth();
~b3SpringCloth();
//
void Initialize(const b3SpringClothDef& def);
//
void SetGravity(const b3Vec3& gravity);
//
const b3Vec3& GetGravity() const;
//
void SetType(u32 i, b3MassType type);
//
b3MassType GetType(u32 i) const;
//
const b3SpringClothStep& GetStep() const;
//
void Step(float32 dt);
//
void Apply() const;
//
void Draw(b3Draw* draw) const;
protected:
b3StackAllocator* m_allocator;
b3Mesh* m_mesh;
b3Vec3 m_gravity;
b3Vec3* m_x;
b3Vec3* m_v;
b3Vec3* m_f;
float32* m_inv_m;
b3MassType* m_massTypes;
u32 m_massCount;
b3Spring* m_springs;
u32 m_springCount;
b3SpringClothStep m_step;
};
inline const b3Vec3& b3SpringCloth::GetGravity() const
{
return m_gravity;
}
inline void b3SpringCloth::SetGravity(const b3Vec3& gravity)
{
m_gravity = gravity;
}
inline b3MassType b3SpringCloth::GetType(u32 i) const
{
B3_ASSERT(i < m_massCount);
return m_massTypes[i];
}
inline void b3SpringCloth::SetType(u32 i, b3MassType type)
{
B3_ASSERT(i < m_massCount);
m_massTypes[i] = type;
}
inline const b3SpringClothStep& b3SpringCloth::GetStep() const
{
return m_step;
}
#endif

View File

@ -0,0 +1,698 @@
/*
* Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <bounce/dynamics/cloth/spring_cloth.h>
#include <bounce/collision/shapes/mesh.h>
#include <bounce/common/memory/stack_allocator.h>
// Here, we solve Ax = b using the Modified Conjugate Gradient method.
// This work is based on the paper "Large Steps in Cloth Simulation - David Baraff, Andrew Witkin".
b3SpringCloth::b3SpringCloth()
{
m_allocator = nullptr;
m_mesh = nullptr;
m_gravity.SetZero();
m_x = nullptr;
m_v = nullptr;
m_f = nullptr;
m_inv_m = nullptr;
m_massTypes = nullptr;
m_massCount = 0;
m_springs = nullptr;
m_springCount = 0;
m_step.iterations = 0;
}
b3SpringCloth::~b3SpringCloth()
{
b3Free(m_x);
b3Free(m_v);
b3Free(m_f);
b3Free(m_inv_m);
b3Free(m_massTypes);
b3Free(m_springs);
}
void b3SpringCloth::Initialize(const b3SpringClothDef& def)
{
B3_ASSERT(def.allocator);
B3_ASSERT(def.mesh);
m_allocator = def.allocator;
m_mesh = def.mesh;
m_gravity = def.gravity;
const b3Mesh* m = m_mesh;
m_massCount = m->vertexCount;
m_x = (b3Vec3*)b3Alloc(m_massCount * sizeof(b3Vec3));
m_v = (b3Vec3*)b3Alloc(m_massCount * sizeof(b3Vec3));
m_f = (b3Vec3*)b3Alloc(m_massCount * sizeof(b3Vec3));
m_inv_m = (float32*)b3Alloc(m_massCount * sizeof(float32));
m_massTypes = (b3MassType*)b3Alloc(m_massCount * sizeof(b3MassType));
for (u32 i = 0; i < m->vertexCount; ++i)
{
m_x[i] = m->vertices[i];
m_v[i].SetZero();
m_f[i].SetZero();
m_inv_m[i] = 0.0f;
m_massTypes[i] = e_staticMass;
}
// Initialize mass
for (u32 i = 0; i < m->triangleCount; ++i)
{
b3Triangle* t = m->triangles + i;
b3Vec3 p1 = m->vertices[t->v1];
b3Vec3 p2 = m->vertices[t->v2];
b3Vec3 p3 = m->vertices[t->v3];
float32 area = b3Area(p1, p2, p3);
float32 mass = def.density * area;
const float32 inv3 = 1.0f / 3.0f;
m_inv_m[t->v1] += inv3 * mass;
m_inv_m[t->v2] += inv3 * mass;
m_inv_m[t->v3] += inv3 * mass;
}
// Invert
for (u32 i = 0; i < m_massCount; ++i)
{
if (m_inv_m[i] > 0.0f)
{
m_inv_m[i] = 1.0f / m_inv_m[i];
m_massTypes[i] = e_dynamicMass;
}
}
// Initialize springs
m_springs = (b3Spring*)b3Alloc(3 * m->triangleCount * sizeof(b3Spring));
// Streching
for (u32 i = 0; i < m->triangleCount; ++i)
{
b3Triangle* t = m->triangles + i;
u32 is[3] = { t->v1, t->v2, t->v3 };
for (u32 j = 0; j < 3; ++j)
{
u32 k = j + 1 < 3 ? j + 1 : 0;
u32 v1 = is[j];
u32 v2 = is[k];
b3Vec3 p1 = m->vertices[v1];
b3Vec3 p2 = m->vertices[v2];
// Skip duplicated spring
bool found = false;
for (u32 s = 0; s < m_springCount; ++s)
{
if ((m_springs[s].i1 == v1 && m_springs[s].i2 == v2) || (m_springs[s].i1 == v2 && m_springs[s].i2 == v1))
{
found = true;
break;
}
}
if (found == false)
{
b3Spring* S = m_springs + m_springCount;
S->i1 = v1;
S->i2 = v2;
S->L0 = b3Distance(p1, p2);
S->ks = def.ks;
S->kd = def.kd;
++m_springCount;
}
}
}
}
static B3_FORCE_INLINE void b3Filter(b3Vec3* out, const b3Vec3* v, u32 size, const b3MassType* types)
{
for (u32 i = 0; i < size; ++i)
{
switch (types[i])
{
case e_staticMass:
{
out[i].SetZero();
break;
}
case e_dynamicMass:
{
out[i] = v[i];
break;
}
default:
{
B3_ASSERT(false);
break;
}
}
}
}
static B3_FORCE_INLINE void b3SetZero(b3Vec3* out, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i].SetZero();
}
}
static B3_FORCE_INLINE void b3Copy(b3Vec3* out, const b3Vec3* v, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i] = v[i];
}
}
static B3_FORCE_INLINE void b3Add(b3Vec3* out, const b3Vec3* a, const b3Vec3* b, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i] = a[i] + b[i];
}
}
static B3_FORCE_INLINE void b3Sub(b3Vec3* out, const b3Vec3* a, const b3Vec3* b, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i] = a[i] - b[i];
}
}
static B3_FORCE_INLINE float32 b3Dot(const b3Vec3* a, const b3Vec3* b, u32 size)
{
float32 result = 0.0f;
for (u32 i = 0; i < size; ++i)
{
result += b3Dot(a[i], b[i]);
}
return result;
}
#define B3_INDEX(i, j, size) (i + j * size)
static B3_FORCE_INLINE void b3SetZero(b3Mat33* out, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
for (u32 j = 0; j < size; ++j)
{
out[B3_INDEX(i, j, size)].SetZero();
}
}
}
static B3_FORCE_INLINE void b3Mul(b3Vec3* out, const b3Mat33* M, const b3Vec3* v, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i].SetZero();
for (u32 j = 0; j < size; ++j)
{
out[i] += M[ B3_INDEX(i, j, size) ] * v[j];
}
}
}
// J = dfdx or dvdx
static B3_FORCE_INLINE void b3Mul_Jacobian(b3Vec3* out, const b3Vec3* v, u32 mass_size,
const b3Mat33* J_ii, const b3Spring* springs, u32 spring_size)
{
b3SetZero(out, mass_size);
for (u32 i = 0; i < spring_size; ++i)
{
const b3Spring* S = springs + i;
u32 i1 = S->i1;
u32 i2 = S->i2;
b3Mat33 J_11 = J_ii[i];
b3Mat33 J_12 = -J_11;
b3Mat33 J_21 = J_12;
b3Mat33 J_22 = J_11;
out[i1] += J_11 * v[i1] + J_12 * v[i2];
out[i2] += J_21 * v[i1] + J_22 * v[i2];
}
}
static B3_FORCE_INLINE void b3SetZero_Jacobian(b3Mat33* out, u32 size)
{
for (u32 i = 0; i < size; ++i)
{
out[i].SetZero();
}
}
// A = M - h * dfdv - h * h * dfdx
// A * v = (M - h * dfdv - h * h * dfdx) * v = M * v + (-h * dfdv * v) + (-h * h * dfdx * v)
static B3_FORCE_INLINE void b3Mul_A(b3Vec3* out, const b3Vec3* v, u32 mass_size,
b3StackAllocator* allocator,
const float32* inv_m, float32 h, const b3Mat33* Jx, const b3Mat33* Jv, const b3Spring* springs, u32 spring_size)
{
// v1 = M * v
b3Vec3* v1 = (b3Vec3*)allocator->Allocate(mass_size * sizeof(b3Vec3));
for (u32 i = 0; i < mass_size; ++i)
{
float32 m = inv_m[i] != 0.0f ? 1.0f / inv_m[i] : 0.0f;
v1[i] = m * v[i];
}
// v2 = (-h * dfdv * v)
b3Vec3* v2 = (b3Vec3*)allocator->Allocate(mass_size * sizeof(b3Vec3));
b3Mul_Jacobian(v2, v, mass_size, Jv, springs, spring_size);
for (u32 i = 0; i < mass_size; ++i)
{
v2[i] *= -h;
}
// v3 = (-h * h * dfdx * v)
b3Vec3* v3 = (b3Vec3*)allocator->Allocate(mass_size * sizeof(b3Vec3));
b3Mul_Jacobian(v3, v, mass_size, Jx, springs, spring_size);
for (u32 i = 0; i < mass_size; ++i)
{
v3[i] *= -h * h;
}
// v = v1 + v2 + v3
for (u32 i = 0; i < mass_size; ++i)
{
out[i] = v1[i] + v2[i] + v3[i];
}
allocator->Free(v3);
allocator->Free(v2);
allocator->Free(v1);
}
void b3SpringCloth::Step(float32 h)
{
u32 size = m_massCount;
b3MassType* types = m_massTypes;
u32 spring_size = m_springCount;
// Add gravity
for (u32 i = 0; i < size; ++i)
{
m_f[i] += m_gravity;
}
// Compute non-zero Jacobians Jx, Jv
b3Mat33* Jx = (b3Mat33*)m_allocator->Allocate(spring_size * sizeof(b3Mat33));
b3SetZero_Jacobian(Jx, spring_size);
b3Mat33* Jv = (b3Mat33*)m_allocator->Allocate(spring_size * sizeof(b3Mat33));
b3SetZero_Jacobian(Jv, spring_size);
// Compute forces and Jacobians
for (u32 i = 0; i < m_springCount; ++i)
{
b3Spring* S = m_springs + i;
b3Vec3 x1 = m_x[S->i1];
b3Vec3 v1 = m_v[S->i1];
b3Vec3 x2 = m_x[S->i2];
b3Vec3 v2 = m_v[S->i2];
// Strech
b3Vec3 dx = x2 - x1;
float32 L = b3Length(dx);
b3Vec3 n = dx;
if (L > 0.0f)
{
n /= L;
}
float32 C = L - S->L0;
// Compute streching forces
b3Vec3 sf1 = -S->ks * C * -n;
b3Vec3 sf2 = -sf1;
m_f[S->i1] += sf1;
m_f[S->i2] += sf2;
// Compute damping forces
b3Vec3 dv = v2 - v1;
b3Vec3 df1 = -S->kd * -dv;
b3Vec3 df2 = -df1;
m_f[S->i1] += df1;
m_f[S->i2] += df2;
b3Mat33 I = b3Mat33_identity;
// Compute Jx11
float32 inv_L = L > 0.0f ? 1.0f / L : 0.0f;
float32 L2 = L * L;
float32 inv_L2 = L2 > 0.0f ? 1.0f / L2 : 0.0f;
// Hessian
// del^2_C / del_x
b3Mat33 H_11 = inv_L * I + inv_L2 * b3Outer(dx, -n);
// del_C / del_x * del_C / del_x^T
b3Mat33 JJ_11 = b3Outer(-n, -n);
b3Mat33 Jx11 = -S->ks * (C * H_11 + JJ_11);
Jx[i] = Jx11;
// Compute Jv11
b3Mat33 Jv11 = -S->kd * I;
Jv[i] = Jv11;
}
// Solve Ax = b
// Compute b
// b = h * (f0 + h * dfdx * v0)
b3Vec3* b = (b3Vec3*) m_allocator->Allocate(size * sizeof(b3Vec3));
// b = dfdx * v0
// b3Mul(b, dfdx, m_v, size);
b3Mul_Jacobian(b, m_v, size, Jx, m_springs, m_springCount);
// b = h * (f0 + h * b)
for (u32 i = 0; i < size; ++i)
{
b[i] = h * (m_f[i] + h * b[i]);
}
// Solve Ax = b
b3Vec3* z = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* dv = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* Adv = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* r = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* c = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* q = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* s = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* P = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Vec3* inv_P = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
// Compute z
for (u32 i = 0; i < size; ++i)
{
switch (types[i])
{
case e_staticMass:
{
z[i].SetZero();
break;
}
case e_dynamicMass:
{
z[i].SetZero();
break;
}
default:
{
B3_ASSERT(false);
break;
}
}
}
// dv = z
b3Copy(dv, z, size);
// Adv = A * dv
// b3Mul(Adv, A, dv, size);
b3Mul_A(Adv, dv, size, m_allocator, m_inv_m, h, Jx, Jv, m_springs, m_springCount);
// Compute P, P^-1
// We compute A because P = diag(A)^-1
// Note this is not necessary, and should be optimized as soon
// as possible.
// A = M - h * dfdv - h * h * dfdx
b3Mat33* A = (b3Mat33*)m_allocator->Allocate(size * size * sizeof(b3Mat33));
// A = 0
b3SetZero(A, size);
// Compute dfdx, dfdv
b3Mat33* dfdx = (b3Mat33*)m_allocator->Allocate(size * size * sizeof(b3Mat33));
b3SetZero(dfdx, size);
b3Mat33* dfdv = (b3Mat33*)m_allocator->Allocate(size * size * sizeof(b3Mat33));
b3SetZero(dfdv, size);
for (u32 i = 0; i < m_springCount; ++i)
{
b3Spring* S = m_springs + i;
b3Mat33 Jx11 = Jx[i];
b3Mat33 Jx12 = -Jx11;
b3Mat33 Jx21 = Jx12;
b3Mat33 Jx22 = Jx11;
dfdx[B3_INDEX(S->i1, S->i1, size)] += Jx11;
dfdx[B3_INDEX(S->i1, S->i2, size)] += Jx12;
dfdx[B3_INDEX(S->i2, S->i1, size)] += Jx21;
dfdx[B3_INDEX(S->i2, S->i2, size)] += Jx22;
b3Mat33 Jv11 = Jv[i];
b3Mat33 Jv12 = -Jv11;
b3Mat33 Jv21 = Jv12;
b3Mat33 Jv22 = Jv11;
dfdv[B3_INDEX(S->i1, S->i1, size)] += Jv11;
dfdv[B3_INDEX(S->i1, S->i2, size)] += Jv12;
dfdv[B3_INDEX(S->i2, S->i1, size)] += Jv21;
dfdv[B3_INDEX(S->i2, S->i2, size)] += Jv22;
}
// A += M
for (u32 i = 0; i < size; ++i)
{
float32 m = 1.0f / m_inv_m[i];
A[B3_INDEX(i, i, size)] += b3Diagonal(m);
}
// A += - h * dfdv - h * h * dfdx
for (u32 i = 0; i < size; ++i)
{
for (u32 j = 0; j < size; ++j)
{
A[B3_INDEX(i, j, size)] += (-h * dfdv[B3_INDEX(i, j, size)]) + (-h * h * dfdx[B3_INDEX(i, j, size)]);
}
}
for (u32 i = 0; i < size; ++i)
{
b3Mat33 D = A[B3_INDEX(i, i, size)];
B3_ASSERT(D[0][0] != 0.0f);
B3_ASSERT(D[1][1] != 0.0f);
B3_ASSERT(D[2][2] != 0.0f);
P[i] = b3Vec3(1.0f / D[0][0], 1.0f / D[1][1], 1.0f / D[2][2]);
inv_P[i] = b3Vec3(D[0][0], D[1][1], D[2][2]);
}
m_allocator->Free(dfdv);
m_allocator->Free(dfdx);
m_allocator->Free(A);
// eps0 = dot( filter(b), P * filter(b) )
b3Vec3* filter_b = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
b3Filter(filter_b, b, size, types);
b3Vec3* P_filter_b = (b3Vec3*)m_allocator->Allocate(size * sizeof(b3Vec3));
for (u32 i = 0; i < size; ++i)
{
P_filter_b[i][0] = P[i][0] * filter_b[i][0];
P_filter_b[i][1] = P[i][1] * filter_b[i][1];
P_filter_b[i][2] = P[i][2] * filter_b[i][2];
}
float32 eps0 = b3Dot(filter_b, P_filter_b, size);
m_allocator->Free(P_filter_b);
m_allocator->Free(filter_b);
// r = filter(b - Adv)
b3Sub(r, b, Adv, size);
b3Filter(r, r, size, types);
// c = filter(P^-1 * r)
for (u32 i = 0; i < m_massCount; ++i)
{
c[i][0] = inv_P[i][0] * r[i][0];
c[i][1] = inv_P[i][1] * r[i][1];
c[i][2] = inv_P[i][2] * r[i][2];
}
b3Filter(c, c, size, types);
// epsNew = dot(r, c)
float32 epsNew = b3Dot(r, c, size);
// This is in [0, 1]
// Making it smaller can increase accuracy, but it might increase the number
// of iterations to be taken by the solver.
const float32 kTol = 0.75f;
// Limit number of iterations to prevent cycling.
const u32 kMaxIters = 100;
// Main iteration loop.
u32 iter = 0;
while (iter < kMaxIters && epsNew > kTol * kTol * eps0)
{
// q = filter(A * c)
// b3Mul(q, A, c, size);
b3Mul_A(q, c, size, m_allocator, m_inv_m, h, Jx, Jv, m_springs, m_springCount);
b3Filter(q, q, size, types);
// alpha = epsNew / dot(c, q)
float32 alpha = epsNew / b3Dot(c, q, size);
// x = x + alpha * c
for (u32 i = 0; i < m_massCount; ++i)
{
dv[i] = dv[i] + alpha * c[i];
}
// r = r - alpha * q
for (u32 i = 0; i < m_massCount; ++i)
{
r[i] = r[i] - alpha * q[i];
}
// s = inv_P * r
for (u32 i = 0; i < m_massCount; ++i)
{
s[i][0] = inv_P[i][0] * r[i][0];
s[i][1] = inv_P[i][1] * r[i][1];
s[i][2] = inv_P[i][2] * r[i][2];
}
// epsOld = epsNew
float32 epsOld = epsNew;
// epsNew = dot(r, s)
epsNew = b3Dot(r, s, size);
// beta = epsNew / epsOld
float32 beta = epsNew / epsOld;
// c = filter(s + beta * c)
for (u32 i = 0; i < m_massCount; ++i)
{
c[i] = s[i] + beta * c[i];
}
b3Filter(c, c, size, types);
++iter;
}
m_step.iterations = iter;
// Update state
for (u32 i = 0; i < m_massCount; ++i)
{
m_v[i] += dv[i];
m_x[i] += h * m_v[i];
}
// Clear forces
for (u32 i = 0; i < m_massCount; ++i)
{
m_f[i].SetZero();
}
m_allocator->Free(inv_P);
m_allocator->Free(P);
m_allocator->Free(s);
m_allocator->Free(q);
m_allocator->Free(c);
m_allocator->Free(r);
m_allocator->Free(Adv);
m_allocator->Free(dv);
m_allocator->Free(z);
m_allocator->Free(b);
m_allocator->Free(Jv);
m_allocator->Free(Jx);
}
void b3SpringCloth::Apply() const
{
for (u32 i = 0; i < m_massCount; ++i)
{
m_mesh->vertices[i] = m_x[i];
}
}
void b3SpringCloth::Draw(b3Draw* draw) const
{
const b3Mesh* m = m_mesh;
for (u32 i = 0; i < m->vertexCount; ++i)
{
draw->DrawPoint(m_x[i], 2.0f, b3Color_green);
}
for (u32 i = 0; i < m->triangleCount; ++i)
{
b3Triangle* t = m->triangles + i;
b3Vec3 v1 = m_x[t->v1];
b3Vec3 v2 = m_x[t->v2];
b3Vec3 v3 = m_x[t->v3];
b3Vec3 n1 = b3Cross(v2 - v1, v3 - v1);
n1.Normalize();
b3Vec3 n2 = -n1;
draw->DrawSolidTriangle(n1, v1, v2, v3, b3Color_blue);
draw->DrawSolidTriangle(n2, v1, v3, v2, b3Color_blue);
}
}