simplify preconditioning the system matrix, bugfix

This commit is contained in:
Irlan
2018-05-16 16:18:00 -03:00
parent 7e7935c28a
commit 69ee19ffac
2 changed files with 42 additions and 117 deletions

View File

@ -63,16 +63,10 @@ private:
// Compute the constraint projection matrix S.
void Compute_S(b3Mat33* S);
// Solve Ax = b using the Modified Conjugate Gradient (MCG).
// Output x and the residual error f.
void Solve_MCG(b3DenseVec3& x0, b3DenseVec3& f, u32& iterations, const b3SparseMat33& A, const b3DenseVec3& b, const b3Mat33* S) const;
// Solve Ax = b using MCG with Jacobi preconditioning.
// Output x and the residual error f.
// This method is slower than MCG because we have to compute the preconditioning
// matrix P, but it can improve convergence.
void Solve_MPCG(b3DenseVec3& x0, b3DenseVec3& f, u32& iterations, const b3SparseMat33& A, const b3DenseVec3& b, const b3Mat33* S) const;
// Solve Ax = b.
// Output x and the residual error f = Ax - b ~ 0.
void Solve(b3DenseVec3& x0, b3DenseVec3& f, u32& iterations, const b3SparseMat33& A, const b3DenseVec3& b, const b3Mat33* S) const;
b3SpringCloth * m_cloth;
float32 m_h;

View File

@ -26,9 +26,7 @@
// Here, we solve Ax = b using the Modified Conjugate Gradient method.
// This work is based on the paper "Large Steps in Cloth Simulation - David Baraff, Andrew Witkin".
// Enable preconditioning. It can be slow, depending on
// how the preconditioning matrix is computed, but it can help
// to increase convergence.
// Enable preconditioning.
bool b3_enablePrecontitioning = false;
b3SpringSolver::b3SpringSolver(const b3SpringSolverDef& def)
@ -102,15 +100,8 @@ void b3SpringSolver::Solve(b3DenseVec3& f)
// S
b3Mat33* S = (b3Mat33*)m_allocator->Allocate(m_massCount * sizeof(b3Mat33));
Compute_S(S);
if (b3_enablePrecontitioning)
{
Solve_MPCG(x, f, m_iterations, A, b, S);
}
else
{
Solve_MCG(x, f, m_iterations, A, b, S);
}
Solve(x, f, m_iterations, A, b, S);
// Update state
for (u32 i = 0; i < m_massCount; ++i)
@ -314,17 +305,6 @@ void b3SpringSolver::Compute_A_b(b3SparseMat33& SA, b3DenseVec3& b) const
// Assembly sparsity
u32 nzCount = 0;
#if 0
for (u32 i = 0; i < m_massCount * m_massCount; ++i)
{
b3Mat33 a = A[i];
if (b3IsZero(a) == false)
{
++nzCount;
}
}
#endif
SA.row_ptrs[0] = 0;
for (u32 i = 0; i < m_massCount; ++i)
@ -410,7 +390,7 @@ void b3SpringSolver::Compute_S(b3Mat33* out)
{
if (m_contacts[i].lockT1 == true)
{
b3Vec3 t1 = m_contacts[i].t2;
b3Vec3 t1 = m_contacts[i].t1;
S -= b3Outer(t1, t1);
}
@ -439,7 +419,7 @@ void b3SpringSolver::Compute_S(b3Mat33* out)
}
}
// Maintains invariants inside the MCG solver.
// S * v
static void b3Filter(b3DenseVec3& out,
const b3DenseVec3& v, const b3Mat33* S, u32 massCount)
{
@ -449,66 +429,6 @@ static void b3Filter(b3DenseVec3& out,
}
}
void b3SpringSolver::Solve_MCG(b3DenseVec3& dv, b3DenseVec3& e, u32& iterations, const b3SparseMat33& A, const b3DenseVec3& b, const b3Mat33* S) const
{
// r = filter(b - Adv)
b3DenseVec3 r = b - A * dv;
b3Filter(r, r, S, m_massCount);
// c = r
b3DenseVec3 c = r;
// eps0 = dot(r, r)
float32 eps0 = b3Dot(r, r);
// epsNew = dot(r, r)
float32 epsNew = eps0;
// [0, 1]
const float32 kTol = 0.02f;
// Limit number of iterations to prevent cycling.
const u32 kMaxIters = 200;
// Main iteration loop.
u32 iter = 0;
while (iter < kMaxIters && epsNew > kTol * kTol * eps0)
{
// q = filter(A * c)
b3DenseVec3 q = A * c;
b3Filter(q, q, S, m_massCount);
// alpha = epsNew / dot(c, q)
float32 alpha = epsNew / b3Dot(c, q);
// dv = dv + alpha * c
dv = dv + alpha * c;
// r = r - alpha * q
r = r - alpha * q;
// epsOld = epsNew
float32 epsOld = epsNew;
// epsNew = dot(r, r)
epsNew = b3Dot(r, r);
float32 beta = epsNew / epsOld;
// c = filter(r + beta * c)
c = r + beta * c;
b3Filter(c, c, S, m_massCount);
++iter;
}
iterations = iter;
// Residual error
// f = A * x - b
e = A * dv - b;
}
// Sylvester's Criterion
static bool b3IsPD(const b3Mat33* diagA, u32 n)
{
@ -528,40 +448,51 @@ static bool b3IsPD(const b3Mat33* diagA, u32 n)
return true;
}
void b3SpringSolver::Solve_MPCG(b3DenseVec3& dv, b3DenseVec3& e, u32& iterations, const b3SparseMat33& A, const b3DenseVec3& b, const b3Mat33* S) const
void b3SpringSolver::Solve(b3DenseVec3& dv, b3DenseVec3& e, u32& iterations, const b3SparseMat33& A, const b3DenseVec3& b, const b3Mat33* S) const
{
// P = diag(A)^-1
b3DenseVec3 P(m_massCount);
b3DenseVec3 inv_P(m_massCount);
// diag(A)
b3Mat33* diagA = (b3Mat33*)m_allocator->Allocate(m_massCount * sizeof(b3Mat33));
A.AssembleDiagonal(diagA);
// Compute P, P^-1
bool isPD = true;
for (u32 i = 0; i < m_massCount; ++i)
if (b3_enablePrecontitioning)
{
b3Mat33 D = diagA[i];
// P = diag(A)^-1
// diag(A)
b3Mat33* diagA = (b3Mat33*)m_allocator->Allocate(m_massCount * sizeof(b3Mat33));
A.AssembleDiagonal(diagA);
if (b3Det(D.x, D.y, D.z) <= B3_EPSILON)
for (u32 i = 0; i < m_massCount; ++i)
{
isPD = false;
b3Mat33 D = diagA[i];
// Sylvester's Criterion
B3_ASSERT(b3Det(D.x, D.y, D.z) <= B3_EPSILON);
B3_ASSERT(D[0][0] != 0.0f);
B3_ASSERT(D[1][1] != 0.0f);
B3_ASSERT(D[2][2] != 0.0f);
P[i] = b3Vec3(1.0f / D[0][0], 1.0f / D[1][1], 1.0f / D[2][2]);
inv_P[i] = b3Vec3(D[0][0], D[1][1], D[2][2]);
}
B3_ASSERT(D[0][0] != 0.0f);
B3_ASSERT(D[1][1] != 0.0f);
B3_ASSERT(D[2][2] != 0.0f);
P[i] = b3Vec3(1.0f / D[0][0], 1.0f / D[1][1], 1.0f / D[2][2]);
inv_P[i] = b3Vec3(D[0][0], D[1][1], D[2][2]);
m_allocator->Free(diagA);
}
else
{
// P = I
for (u32 i = 0; i < m_massCount; ++i)
{
P[i].Set(1.0f, 1.0f, 1.0f);
}
B3_ASSERT(isPD == true);
m_allocator->Free(diagA);
for (u32 i = 0; i < m_massCount; ++i)
{
inv_P[i].Set(1.0f, 1.0f, 1.0f);
}
}
// eps0 = dot( filter(b), P * filter(b) )
b3DenseVec3 filtered_b(m_massCount);
@ -595,10 +526,10 @@ void b3SpringSolver::Solve_MPCG(b3DenseVec3& dv, b3DenseVec3& e, u32& iterations
float32 epsNew = b3Dot(r, c);
// [0, 1]
const float32 kTol = 0.02f;
const float32 kTol = 1000.0f * B3_EPSILON;
// Limit number of iterations to prevent cycling.
const u32 kMaxIters = 200;
const u32 kMaxIters = 1000;
// Main iteration loop.
u32 iter = 0;