remove unecessary gjk duplication

This commit is contained in:
Irlan
2017-03-26 13:27:02 -03:00
parent 153abfb2fe
commit a683052e4c
13 changed files with 327 additions and 444 deletions

View File

@ -28,7 +28,6 @@
#include <bounce/common/math/math.h>
#include <bounce/collision/gjk/gjk.h>
#include <bounce/collision/gjk/gjk_cache.h>
#include <bounce/collision/sat/sat.h>
#include <bounce/collision/collision.h>
#include <bounce/collision/broad_phase.h>

View File

@ -19,7 +19,9 @@
#ifndef B3_GJK_H
#define B3_GJK_H
#include <bounce/common/geometry.h>
#include <bounce/common/math/transform.h>
///////////////////////////////////////////////////////////////////////////////////////////////////
class b3GJKProxy;
struct b3SimplexCache;
@ -73,4 +75,43 @@ struct b3GJKOutput
b3GJKOutput b3GJK(const b3Transform& xf1, const b3GJKProxy& proxy1,
const b3Transform& xf2, const b3GJKProxy& proxy2);
///////////////////////////////////////////////////////////////////////////////////////////////////
// A cached simplex is used to improve the performance
// of the GJK when called more than once.
// Make sure to set cache.count to zero before
// passing this structure as an argument to GJK when called
// for the first time.
struct b3SimplexCache
{
float32 metric; // distance or area or volume
u32 iterations; // number of GJK iterations
u16 count; // number of support vertices
u8 index1[4]; // support vertices on proxy 1
u8 index2[4]; // support vertices on proxy 2
};
// A feature pair contains the vertices of the features associated
// with the closest points.
struct b3GJKFeaturePair
{
u32 index1[3]; // vertices on proxy 1
u32 count1; // number of vertices on proxy 1
u32 index2[3]; // vertices on proxy 2
u32 count2; // number of vertices on proxy 2
};
// Identify the vertices of the features that the closest points between two
// GJK proxies are contained on given a cached simplex.
// The GJK must have been called using the pair of proxies and
// cache.count must be < 4, that is, the proxies must not be overlapping.
b3GJKFeaturePair b3GetFeaturePair(const b3SimplexCache& cache);
// Find the closest points and distance between two proxies.
// Assumes a simplex is given for increasing the performance of
// the algorithm when called more than once.
b3GJKOutput b3GJK(const b3Transform& xf1, const b3GJKProxy& proxy1,
const b3Transform& xf2, const b3GJKProxy& proxy2,
bool applyRadius, b3SimplexCache* cache);
#endif

View File

@ -1,61 +0,0 @@
/*
* Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_GJK_CACHE_H
#define B3_GJK_CACHE_H
#include <bounce/collision/gjk/gjk.h>
// A cached simplex is used to improve the performance
// of the GJK when called more than once.
// Make sure to set cache.count to zero before
// passing this structure as an argument to GJK when called
// for the first time.
struct b3SimplexCache
{
float32 metric; // distance or area or volume
u32 iterations; // number of GJK iterations
u16 count; // number of support vertices
u8 index1[4]; // support vertices on proxy 1
u8 index2[4]; // support vertices on proxy 2
};
// Find the closest points and distance between two proxies.
// Assumes a simplex is given for increasing the performance of
// the algorithm when called more than once.
b3GJKOutput b3GJK(const b3Transform& xf1, const b3GJKProxy& proxy1,
const b3Transform& xf2, const b3GJKProxy& proxy2,
bool applyRadius, b3SimplexCache* cache);
// A feature pair contains the vertices of the features associated
// with the closest points.
struct b3GJKFeaturePair
{
u32 index1[3]; // vertices on proxy 1
u32 count1; // number of vertices on proxy 1
u32 index2[3]; // vertices on proxy 2
u32 count2; // number of vertices on proxy 2
};
// Identify the vertices of the features that the closest points between two
// GJK proxies are contained on given a cached simplex.
// The GJK must have been called using the pair of proxies and
// cache.count must be < 4, that is, the proxies must not be overlapping.
b3GJKFeaturePair b3GetFeaturePair(const b3SimplexCache& cache);
#endif

View File

@ -75,74 +75,6 @@ inline float32 b3Distance(const b3Vec3& P, const b3Plane& plane)
return b3Dot(plane.normal, P) - plane.offset;
}
// Compute barycentric coordinates (u, v) for point Q to segment AB.
// The last output value is the divisor.
inline void b3Barycentric(float32 out[3],
const b3Vec3& A, const b3Vec3& B,
const b3Vec3& Q)
{
b3Vec3 AB = B - A;
b3Vec3 QA = A - Q;
b3Vec3 QB = B - Q;
//float32 divisor = b3Dot(AB, AB);
out[0] = b3Dot(QB, AB);
out[1] = -b3Dot(QA, AB);
out[2] = out[0] + out[1];
}
// Compute barycentric coordinates (u, v, w) for point Q to triangle ABC.
// The last output value is the divisor.
inline void b3Barycentric(float32 out[4],
const b3Vec3& A, const b3Vec3& B, const b3Vec3& C,
const b3Vec3& Q)
{
// RTCD, 140.
b3Vec3 AB = B - A;
b3Vec3 AC = C - A;
b3Vec3 QA = A - Q;
b3Vec3 QB = B - Q;
b3Vec3 QC = C - Q;
b3Vec3 QB_x_QC = b3Cross(QB, QC);
b3Vec3 QC_x_QA = b3Cross(QC, QA);
b3Vec3 QA_x_QB = b3Cross(QA, QB);
b3Vec3 AB_x_AC = b3Cross(AB, AC);
//float32 divisor = b3Dot(AB_x_AC, AB_x_AC);
out[0] = b3Dot(QB_x_QC, AB_x_AC);
out[1] = b3Dot(QC_x_QA, AB_x_AC);
out[2] = b3Dot(QA_x_QB, AB_x_AC);
out[3] = out[0] + out[1] + out[2];
}
// Compute barycentric coordinates (u, v, w, x) for point Q to tetrahedron ABCD.
// The last output value is the (positive) divisor.
inline void b3Barycentric(float32 out[5],
const b3Vec3& A, const b3Vec3& B, const b3Vec3& C, const b3Vec3& D,
const b3Vec3& Q)
{
// RTCD, 48, 49.
b3Vec3 AB = B - A;
b3Vec3 AC = C - A;
b3Vec3 AD = D - A;
b3Vec3 QA = A - Q;
b3Vec3 QB = B - Q;
b3Vec3 QC = C - Q;
b3Vec3 QD = D - Q;
float32 divisor = b3Det(AB, AC, AD);
float32 sign = b3Sign(divisor);
out[0] = sign * b3Det(QB, QC, QD);
out[1] = sign * b3Det(QA, QD, QC);
out[2] = sign * b3Det(QA, QB, QD);
out[3] = sign * b3Det(QA, QC, QB);
out[4] = sign * divisor;
}
// Project a point onto a normal plane.
inline b3Vec3 b3ClosestPointOnPlane(const b3Vec3& P, const b3Plane& plane)
{
@ -150,11 +82,56 @@ inline b3Vec3 b3ClosestPointOnPlane(const b3Vec3& P, const b3Plane& plane)
return P - fraction * plane.normal;
}
// Convert a point Q from euclidean coordinates to barycentric coordinates (u, v)
// with respect to a segment AB.
// The last output value is the divisor.
inline void b3BarycentricCoordinates(float32 out[3],
const b3Vec3& A, const b3Vec3& B,
const b3Vec3& Q)
{
b3Vec3 AB = B - A;
b3Vec3 QA = A - Q;
b3Vec3 QB = B - Q;
float32 divisor = b3Dot(AB, AB);
out[0] = b3Dot(QB, AB);
out[1] = -b3Dot(QA, AB);
out[2] = divisor;
}
// Convert a point Q from euclidean coordinates to barycentric coordinates (u, v, w)
// with respect to a triangle ABC.
// The last output value is the divisor.
inline void b3BarycentricCoordinates(float32 out[4],
const b3Vec3& A, const b3Vec3& B, const b3Vec3& C,
const b3Vec3& Q)
{
b3Vec3 AB = B - A;
b3Vec3 AC = C - A;
b3Vec3 QA = A - Q;
b3Vec3 QB = B - Q;
b3Vec3 QC = C - Q;
b3Vec3 QB_x_QC = b3Cross(QB, QC);
b3Vec3 QC_x_QA = b3Cross(QC, QA);
b3Vec3 QA_x_QB = b3Cross(QA, QB);
b3Vec3 AB_x_AC = b3Cross(AB, AC);
float32 divisor = b3Dot(AB_x_AC, AB_x_AC);
out[0] = b3Dot(QB_x_QC, AB_x_AC);
out[1] = b3Dot(QC_x_QA, AB_x_AC);
out[2] = b3Dot(QA_x_QB, AB_x_AC);
out[3] = divisor;
}
// Project a point onto a segment AB.
inline b3Vec3 b3ClosestPointOnSegment(const b3Vec3& P, const b3Vec3& A, const b3Vec3& B)
{
float32 wAB[3];
b3Barycentric(wAB, A, B, P);
b3BarycentricCoordinates(wAB, A, B, P);
if (wAB[1] <= 0.0f)
{

View File

@ -19,8 +19,8 @@
#ifndef B3_COLLIDE_H
#define B3_COLLIDE_H
#include <bounce/collision/gjk/gjk.h>
#include <bounce/collision/gjk/gjk_proxy.h>
#include <bounce/collision/gjk/gjk_cache.h>
#include <bounce/collision/sat/sat.h>
#include <bounce/collision/sat/sat_edge_and_hull.h>
#include <bounce/collision/sat/sat_vertex_and_hull.h>

View File

@ -97,7 +97,7 @@ public:
// and the intersection fraction.
void RayCast(b3RayCastListener* listener, const b3Vec3& p1, const b3Vec3& p2) const;
// Perform a AABB cast with the world.
// Perform a AABB query with the world.
// The query listener will be notified when two shape AABBs are overlapping.
// If the listener returns false then the query is stopped immediately.
// Otherwise, it continues searching for new overlapping shape AABBs.