through an acceleration constraint, the solver can remove acceleration from kinematic particles; consistency; in effect test update
This commit is contained in:
@@ -31,10 +31,10 @@
|
||||
|
||||
#define B3_CLOTH_BENDING 0
|
||||
|
||||
#define B3_CLOTH_FRICTION 0
|
||||
#define B3_CLOTH_FRICTION 1
|
||||
|
||||
// b3Spring
|
||||
void b3Spring::ApplyForces(const b3ClothSolverData* data)
|
||||
void b3Spring::InitializeForces(const b3ClothSolverData* data)
|
||||
{
|
||||
u32 i1 = p1->solverId;
|
||||
u32 i2 = p2->solverId;
|
||||
@@ -51,36 +51,25 @@ void b3Spring::ApplyForces(const b3ClothSolverData* data)
|
||||
|
||||
if (b3Dot(dx, dx) >= L0 * L0)
|
||||
{
|
||||
// Tension
|
||||
float32 L = b3Length(dx);
|
||||
b3Vec3 n = dx / L;
|
||||
|
||||
b3Vec3 sf1 = -ks * (L - L0) * n;
|
||||
b3Vec3 sf2 = -sf1;
|
||||
|
||||
tension = sf1;
|
||||
|
||||
data->f[i1] += sf1;
|
||||
data->f[i2] += sf2;
|
||||
// Tension
|
||||
f = -ks * (L - L0) * n;
|
||||
|
||||
// Jacobian
|
||||
Jx = -ks * (b3Outer(dx, dx) + (1.0f - L0 / L) * (I - b3Outer(dx, dx)));
|
||||
}
|
||||
else
|
||||
{
|
||||
tension.SetZero();
|
||||
f.SetZero();
|
||||
Jx.SetZero();
|
||||
}
|
||||
|
||||
// Damping
|
||||
b3Vec3 dv = v1 - v2;
|
||||
|
||||
b3Vec3 df1 = -kd * dv;
|
||||
b3Vec3 df2 = -df1;
|
||||
|
||||
data->f[i1] += df1;
|
||||
data->f[i2] += df2;
|
||||
|
||||
f += -kd * dv;
|
||||
Jv = -kd * I;
|
||||
}
|
||||
|
||||
@@ -238,6 +227,9 @@ b3Cloth::b3Cloth(const b3ClothDef& def, b3World* world)
|
||||
c->n_active = false;
|
||||
c->t1_active = false;
|
||||
c->t2_active = false;
|
||||
c->Fn = 0.0f;
|
||||
c->Ft1 = 0.0f;
|
||||
c->Ft2 = 0.0f;
|
||||
}
|
||||
|
||||
// Compute mass
|
||||
@@ -284,7 +276,7 @@ b3Cloth::b3Cloth(const b3ClothDef& def, b3World* world)
|
||||
s->L0 = b3Distance(p1->position, p2->position);
|
||||
s->ks = def.ks;
|
||||
s->kd = def.kd;
|
||||
s->tension.SetZero();
|
||||
s->f.SetZero();
|
||||
}
|
||||
|
||||
#if B3_CLOTH_BENDING
|
||||
@@ -330,7 +322,7 @@ b3Cloth::b3Cloth(const b3ClothDef& def, b3World* world)
|
||||
s->L0 = 0.0f;
|
||||
s->ks = def.ks;
|
||||
s->kd = def.kd;
|
||||
s->tension.SetZero();
|
||||
s->f.SetZero();
|
||||
}
|
||||
|
||||
B3_ASSERT(m_springCount <= springCapacity);
|
||||
@@ -388,21 +380,13 @@ void b3Cloth::UpdateContacts()
|
||||
{
|
||||
B3_PROFILE("Update Contacts");
|
||||
|
||||
// Clear active flags
|
||||
for (u32 i = 0; i < m_particleCount; ++i)
|
||||
{
|
||||
m_contacts[i].n_active = false;
|
||||
m_contacts[i].t1_active = false;
|
||||
m_contacts[i].t2_active = false;
|
||||
}
|
||||
|
||||
// Create contacts
|
||||
for (u32 i = 0; i < m_particleCount; ++i)
|
||||
{
|
||||
b3Particle* p = m_particles + i;
|
||||
|
||||
// Static particles can't participate in unilateral collisions.
|
||||
if (p->type == e_staticParticle)
|
||||
// Static and kinematic particles can't participate in unilateral collisions.
|
||||
if (p->type != e_dynamicParticle)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
@@ -412,6 +396,11 @@ void b3Cloth::UpdateContacts()
|
||||
// Save the old contact
|
||||
b3BodyContact c0 = *c;
|
||||
|
||||
// Create a new contact
|
||||
c->n_active = false;
|
||||
c->t1_active = false;
|
||||
c->t2_active = false;
|
||||
|
||||
b3Sphere s1;
|
||||
s1.vertex = p->position;
|
||||
s1.radius = p->radius;
|
||||
@@ -456,7 +445,7 @@ void b3Cloth::UpdateContacts()
|
||||
c->t2 = b3Cross(c->t1, n);
|
||||
}
|
||||
|
||||
// Update contact state
|
||||
// Update the contact state
|
||||
if (c0.n_active == true && c->n_active == true)
|
||||
{
|
||||
// The contact persists
|
||||
@@ -496,7 +485,7 @@ void b3Cloth::UpdateContacts()
|
||||
continue;
|
||||
}
|
||||
|
||||
b3Shape* s = c->s;
|
||||
b3Shape* s = c->s2;
|
||||
b3Vec3 n = c->n;
|
||||
float32 u = s->GetFriction();
|
||||
float32 normalForce = c0.Fn;
|
||||
|
@@ -48,7 +48,7 @@ b3ClothSolver::b3ClothSolver(const b3ClothSolverDef& def)
|
||||
m_contactCapacity = def.contactCapacity;
|
||||
m_contactCount = 0;
|
||||
m_contacts = (b3BodyContact**)m_allocator->Allocate(m_contactCapacity * sizeof(b3BodyContact*));
|
||||
|
||||
|
||||
m_constraintCapacity = def.particleCapacity;
|
||||
m_constraintCount = 0;
|
||||
m_constraints = (b3AccelerationConstraint*)m_allocator->Allocate(m_constraintCapacity * sizeof(b3AccelerationConstraint));
|
||||
@@ -78,12 +78,20 @@ void b3ClothSolver::Add(b3Spring* s)
|
||||
m_springs[m_springCount++] = s;
|
||||
}
|
||||
|
||||
void b3ClothSolver::InitializeForces()
|
||||
{
|
||||
for (u32 i = 0; i < m_springCount; ++i)
|
||||
{
|
||||
m_springs[i]->InitializeForces(&m_solverData);
|
||||
}
|
||||
}
|
||||
|
||||
void b3ClothSolver::InitializeConstraints()
|
||||
{
|
||||
for (u32 i = 0; i < m_particleCount; ++i)
|
||||
{
|
||||
b3Particle* p = m_particles[i];
|
||||
if (p->type == e_staticParticle)
|
||||
if (p->type != e_dynamicParticle)
|
||||
{
|
||||
b3AccelerationConstraint* ac = m_constraints + m_constraintCount;
|
||||
++m_constraintCount;
|
||||
@@ -98,8 +106,6 @@ void b3ClothSolver::InitializeConstraints()
|
||||
b3BodyContact* pc = m_contacts[i];
|
||||
b3Particle* p = pc->p1;
|
||||
|
||||
B3_ASSERT(p->type != e_staticParticle);
|
||||
|
||||
b3AccelerationConstraint* ac = m_constraints + m_constraintCount;
|
||||
++m_constraintCount;
|
||||
ac->i1 = p->solverId;
|
||||
@@ -118,7 +124,7 @@ void b3ClothSolver::InitializeConstraints()
|
||||
ac->ndof = 1;
|
||||
ac->q = pc->t1;
|
||||
}
|
||||
|
||||
|
||||
if (pc->t2_active)
|
||||
{
|
||||
ac->ndof = 1;
|
||||
@@ -128,22 +134,28 @@ void b3ClothSolver::InitializeConstraints()
|
||||
}
|
||||
}
|
||||
|
||||
static B3_FORCE_INLINE b3SparseMat33 b3AllocSparse(b3StackAllocator* allocator, u32 M, u32 N)
|
||||
struct b3SolverSparseMat33 : public b3SparseMat33
|
||||
{
|
||||
u32 size = M * N;
|
||||
b3Mat33* elements = (b3Mat33*)allocator->Allocate(size * sizeof(b3Mat33));
|
||||
u32* cols = (u32*)allocator->Allocate(size * sizeof(u32));
|
||||
u32* row_ptrs = (u32*)allocator->Allocate((M + 1) * sizeof(u32));
|
||||
b3SolverSparseMat33(b3StackAllocator* a, u32 m, u32 n)
|
||||
{
|
||||
allocator = a;
|
||||
M = m;
|
||||
N = n;
|
||||
valueCount = 0;
|
||||
values = (b3Mat33*)allocator->Allocate(M * N * sizeof(b3Mat33));
|
||||
cols = (u32*)allocator->Allocate(M * N * sizeof(u32));
|
||||
row_ptrs = (u32*)allocator->Allocate((M + 1) * sizeof(u32));
|
||||
}
|
||||
|
||||
return b3SparseMat33(M, N, size, elements, row_ptrs, cols);
|
||||
}
|
||||
~b3SolverSparseMat33()
|
||||
{
|
||||
allocator->Free(row_ptrs);
|
||||
allocator->Free(cols);
|
||||
allocator->Free(values);
|
||||
}
|
||||
|
||||
static B3_FORCE_INLINE void b3FreeSparse(b3SparseMat33& matrix, b3StackAllocator* allocator)
|
||||
{
|
||||
allocator->Free(matrix.row_ptrs);
|
||||
allocator->Free(matrix.cols);
|
||||
allocator->Free(matrix.values);
|
||||
}
|
||||
b3StackAllocator* allocator;
|
||||
};
|
||||
|
||||
void b3ClothSolver::Solve(float32 dt, const b3Vec3& gravity)
|
||||
{
|
||||
@@ -183,19 +195,25 @@ void b3ClothSolver::Solve(float32 dt, const b3Vec3& gravity)
|
||||
for (u32 i = 0; i < m_contactCount; ++i)
|
||||
{
|
||||
b3BodyContact* c = m_contacts[i];
|
||||
b3Particle* p = c->p1;
|
||||
b3Particle* p = c->p1;
|
||||
sy[p->solverId] -= c->s * c->n;
|
||||
}
|
||||
|
||||
// Apply spring forces and derivatives
|
||||
// Initialize forces
|
||||
InitializeForces();
|
||||
|
||||
// Apply internal forces
|
||||
for (u32 i = 0; i < m_springCount; ++i)
|
||||
{
|
||||
m_springs[i]->ApplyForces(&m_solverData);
|
||||
b3Spring* s = m_springs[i];
|
||||
sf[s->p1->solverId] += s->f;
|
||||
sf[s->p2->solverId] -= s->f;
|
||||
}
|
||||
|
||||
// Initialize constraints
|
||||
InitializeConstraints();
|
||||
|
||||
// Compute S, z
|
||||
b3DiagMat33 S(m_particleCount);
|
||||
b3DenseVec3 z(m_particleCount);
|
||||
Compute_S_z(S, z);
|
||||
@@ -205,7 +223,7 @@ void b3ClothSolver::Solve(float32 dt, const b3Vec3& gravity)
|
||||
// b = h * (f0 + h * dfdx * v0 + dfdx * y)
|
||||
|
||||
// A
|
||||
b3SparseMat33 A = b3AllocSparse(m_allocator, m_particleCount, m_particleCount);
|
||||
b3SolverSparseMat33 A(m_allocator, m_particleCount, m_particleCount);
|
||||
|
||||
// b
|
||||
b3DenseVec3 b(m_particleCount);
|
||||
@@ -220,38 +238,17 @@ void b3ClothSolver::Solve(float32 dt, const b3Vec3& gravity)
|
||||
Solve(x, iterations, A, b, S, z, sx0);
|
||||
b3_clothSolverIterations = iterations;
|
||||
|
||||
// f = A * x - b
|
||||
b3DenseVec3 f = A * x - b;
|
||||
|
||||
// Update state
|
||||
// Compute the new state
|
||||
// Clamp large translations?
|
||||
float32 h = dt;
|
||||
sv = sv + x;
|
||||
sx = sx + h * sv + sy;
|
||||
|
||||
// Copy state buffers back to the particles
|
||||
for (u32 i = 0; i < m_particleCount; ++i)
|
||||
{
|
||||
b3Particle* p = m_particles[i];
|
||||
b3ParticleType type = p->type;
|
||||
|
||||
b3Vec3 ix0 = sx[i];
|
||||
b3Vec3 iv0 = sv[i];
|
||||
b3Vec3 iy = sy[i];
|
||||
|
||||
b3Vec3 dv = x[i];
|
||||
|
||||
// v1 = v0 + dv
|
||||
b3Vec3 v1 = iv0;
|
||||
if (type == e_dynamicParticle)
|
||||
{
|
||||
v1 += dv;
|
||||
}
|
||||
|
||||
// dx = h * (v0 + dv) + y = h * v1 + y
|
||||
b3Vec3 dx = h * v1 + iy;
|
||||
|
||||
// x1 = x0 + dx
|
||||
b3Vec3 x1 = ix0 + dx;
|
||||
|
||||
sv[i] = v1;
|
||||
sx[i] = x1;
|
||||
m_particles[i]->position = sx[i];
|
||||
m_particles[i]->velocity = sv[i];
|
||||
}
|
||||
|
||||
// Cache x to improve convergence
|
||||
@@ -263,6 +260,10 @@ void b3ClothSolver::Solve(float32 dt, const b3Vec3& gravity)
|
||||
// Store the extra contact constraint forces that should have been
|
||||
// supplied to enforce the contact constraints exactly.
|
||||
// These forces can be used in contact constraint logic.
|
||||
|
||||
// f = A * x - b
|
||||
b3DenseVec3 f = A * x - b;
|
||||
|
||||
for (u32 i = 0; i < m_contactCount; ++i)
|
||||
{
|
||||
b3BodyContact* c = m_contacts[i];
|
||||
@@ -277,15 +278,6 @@ void b3ClothSolver::Solve(float32 dt, const b3Vec3& gravity)
|
||||
c->Ft1 = b3Dot(force, c->t1);
|
||||
c->Ft2 = b3Dot(force, c->t2);
|
||||
}
|
||||
|
||||
// Copy state buffers back to the particles
|
||||
for (u32 i = 0; i < m_particleCount; ++i)
|
||||
{
|
||||
m_particles[i]->position = sx[i];
|
||||
m_particles[i]->velocity = sv[i];
|
||||
}
|
||||
|
||||
b3FreeSparse(A, m_allocator);
|
||||
}
|
||||
|
||||
#define B3_INDEX(i, j, size) (i + j * size)
|
||||
@@ -329,7 +321,7 @@ static B3_FORCE_INLINE bool b3IsZero(const b3Mat33& A)
|
||||
return isZeroX * isZeroY * isZeroZ;
|
||||
}
|
||||
|
||||
void b3ClothSolver::Compute_A_b(b3SparseMat33& SA, b3DenseVec3& b, const b3DenseVec3& f, const b3DenseVec3& x, const b3DenseVec3& v, const b3DenseVec3& y) const
|
||||
void b3ClothSolver::Compute_A_b(b3SolverSparseMat33& SA, b3DenseVec3& b, const b3DenseVec3& f, const b3DenseVec3& x, const b3DenseVec3& v, const b3DenseVec3& y) const
|
||||
{
|
||||
float32 h = m_solverData.dt;
|
||||
|
||||
@@ -368,7 +360,7 @@ void b3ClothSolver::Compute_A_b(b3SparseMat33& SA, b3DenseVec3& b, const b3Dense
|
||||
}
|
||||
|
||||
// Compute A
|
||||
|
||||
|
||||
// A = M - h * dfdv - h * h * dfdx
|
||||
|
||||
// A = 0
|
||||
@@ -390,14 +382,14 @@ void b3ClothSolver::Compute_A_b(b3SparseMat33& SA, b3DenseVec3& b, const b3Dense
|
||||
}
|
||||
}
|
||||
|
||||
// Assembly sparsity
|
||||
u32 nzCount = 0;
|
||||
// Assembly sparsity.
|
||||
u32 valueCapacity = m_particleCapacity * m_particleCapacity;
|
||||
|
||||
SA.row_ptrs[0] = 0;
|
||||
|
||||
for (u32 i = 0; i < m_particleCount; ++i)
|
||||
{
|
||||
u32 rowNzCount = 0;
|
||||
u32 rowValueCount = 0;
|
||||
|
||||
for (u32 j = 0; j < m_particleCount; ++j)
|
||||
{
|
||||
@@ -405,21 +397,17 @@ void b3ClothSolver::Compute_A_b(b3SparseMat33& SA, b3DenseVec3& b, const b3Dense
|
||||
|
||||
if (b3IsZero(a) == false)
|
||||
{
|
||||
B3_ASSERT(nzCount <= SA.valueCount);
|
||||
|
||||
SA.values[nzCount] = a;
|
||||
SA.cols[nzCount] = j;
|
||||
|
||||
++nzCount;
|
||||
++rowNzCount;
|
||||
SA.values[SA.valueCount] = a;
|
||||
SA.cols[SA.valueCount] = j;
|
||||
++SA.valueCount;
|
||||
++rowValueCount;
|
||||
}
|
||||
}
|
||||
|
||||
SA.row_ptrs[i + 1] = SA.row_ptrs[(i + 1) - 1] + rowNzCount;
|
||||
SA.row_ptrs[i + 1] = SA.row_ptrs[(i + 1) - 1] + rowValueCount;
|
||||
}
|
||||
|
||||
B3_ASSERT(nzCount <= SA.valueCount);
|
||||
SA.valueCount = nzCount;
|
||||
B3_ASSERT(SA.valueCount <= valueCapacity);
|
||||
|
||||
m_allocator->Free(A);
|
||||
|
||||
@@ -525,26 +513,34 @@ void b3ClothSolver::Solve(b3DenseVec3& x, u32& iterations,
|
||||
// p = S * (P^-1 * r)
|
||||
b3DenseVec3 p = S * (inv_P * r);
|
||||
|
||||
// deltaNew = dot(r, p)
|
||||
float32 deltaNew = b3Dot(r, p);
|
||||
// delta_new = dot(r, p)
|
||||
float32 delta_new = b3Dot(r, p);
|
||||
|
||||
// Tolerance.
|
||||
// This is the main stopping criteria.
|
||||
// [0, 1]
|
||||
const float32 tolerance = 10.0f * B3_EPSILON;
|
||||
// Set the tolerance.
|
||||
const float32 tolerance = 1.e-4f;
|
||||
|
||||
// Maximum number of iterations.
|
||||
const u32 maxIters = 1000;
|
||||
// Stop at this iteration if diverged.
|
||||
const u32 max_iterations = 100;
|
||||
|
||||
u32 iteration = 0;
|
||||
|
||||
// Main iteration loop.
|
||||
u32 iter = 0;
|
||||
while (deltaNew > tolerance * tolerance * b_delta && iter < maxIters)
|
||||
while (iteration < max_iterations)
|
||||
{
|
||||
B3_ASSERT(b3IsValid(delta_new));
|
||||
|
||||
// Convergence check.
|
||||
if (delta_new <= tolerance * tolerance * b_delta)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
// s = S * (A * p)
|
||||
b3DenseVec3 s = S * (A * p);
|
||||
|
||||
// alpha = deltaNew / dot(c, q)
|
||||
float32 alpha = deltaNew / b3Dot(p, s);
|
||||
// alpha = delta_new / dot(p, s)
|
||||
float32 alpha = delta_new / b3Dot(p, s);
|
||||
|
||||
// x = x + alpha * p
|
||||
x = x + alpha * p;
|
||||
@@ -555,21 +551,20 @@ void b3ClothSolver::Solve(b3DenseVec3& x, u32& iterations,
|
||||
// h = inv_P * r
|
||||
b3DenseVec3 h = inv_P * r;
|
||||
|
||||
// deltaOld = deltaNew
|
||||
float32 deltaOld = deltaNew;
|
||||
// delta_old = delta_new
|
||||
float32 delta_old = delta_new;
|
||||
|
||||
// deltaNew = dot(r, h)
|
||||
deltaNew = b3Dot(r, h);
|
||||
//B3_ASSERT(b3IsValid(deltaNew));
|
||||
// delta_new = dot(r, h)
|
||||
delta_new = b3Dot(r, h);
|
||||
|
||||
// beta = deltaNew / deltaOld
|
||||
float32 beta = deltaNew / deltaOld;
|
||||
// beta = delta_new / delta_old
|
||||
float32 beta = delta_new / delta_old;
|
||||
|
||||
// p = S * (h + beta * p)
|
||||
p = S * (h + beta * p);
|
||||
|
||||
++iter;
|
||||
++iteration;
|
||||
}
|
||||
|
||||
iterations = iter;
|
||||
iterations = iteration;
|
||||
}
|
Reference in New Issue
Block a user