switch from global to local damping
This commit is contained in:
@ -59,18 +59,47 @@ struct b3BodyDef
|
||||
linearVelocity.SetZero();
|
||||
angularVelocity.SetZero();
|
||||
gravityScale = 1.0f;
|
||||
linearDamping = 0.0f;
|
||||
angularDamping = 0.0f;
|
||||
}
|
||||
|
||||
//
|
||||
b3BodyType type;
|
||||
|
||||
//
|
||||
bool awake;
|
||||
|
||||
//
|
||||
bool fixedRotationX;
|
||||
|
||||
//
|
||||
bool fixedRotationY;
|
||||
|
||||
//
|
||||
bool fixedRotationZ;
|
||||
|
||||
//
|
||||
void* userData;
|
||||
|
||||
//
|
||||
b3Vec3 position;
|
||||
|
||||
//
|
||||
b3Quat orientation;
|
||||
|
||||
//
|
||||
b3Vec3 linearVelocity;
|
||||
|
||||
//
|
||||
b3Vec3 angularVelocity;
|
||||
|
||||
//
|
||||
float32 linearDamping;
|
||||
|
||||
//
|
||||
float32 angularDamping;
|
||||
|
||||
//
|
||||
float32 gravityScale;
|
||||
};
|
||||
|
||||
@ -210,10 +239,22 @@ public:
|
||||
// Transform a frame to the world space.
|
||||
b3Transform GetWorldFrame(const b3Transform& localFrame) const;
|
||||
|
||||
// Get the gravity scale of the body. One is used by default.
|
||||
// Get the linear damping of the body.
|
||||
float32 GetLinearDamping() const;
|
||||
|
||||
// Set the linear damping of the body. Zero is set by default.
|
||||
void SetLinearDamping(float32 damping);
|
||||
|
||||
// Get the angular damping of the body.
|
||||
float32 GetAngularDamping() const;
|
||||
|
||||
// Set the angular damping of the body. Zero is set by default.
|
||||
void SetAngularDamping(float32 damping);
|
||||
|
||||
// Get the gravity scale of the body.
|
||||
float32 GetGravityScale() const;
|
||||
|
||||
// Set the gravity scale of the body.
|
||||
// Set the gravity scale of the body. One is set by default.
|
||||
void SetGravityScale(float32 scale);
|
||||
|
||||
// See if the body is awake.
|
||||
@ -310,12 +351,15 @@ private:
|
||||
// Inverse inertia about the body world center of mass.
|
||||
b3Mat33 m_worldInvI;
|
||||
|
||||
float32 m_gravityScale;
|
||||
b3Vec3 m_force;
|
||||
b3Vec3 m_torque;
|
||||
b3Vec3 m_linearVelocity;
|
||||
b3Vec3 m_angularVelocity;
|
||||
|
||||
float32 m_linearDamping;
|
||||
float32 m_angularDamping;
|
||||
float32 m_gravityScale;
|
||||
|
||||
// Motion proxy for CCD.
|
||||
b3Sweep m_sweep;
|
||||
|
||||
@ -477,6 +521,26 @@ inline void b3Body::SetAwake(bool flag)
|
||||
}
|
||||
}
|
||||
|
||||
inline float32 b3Body::GetLinearDamping() const
|
||||
{
|
||||
return m_linearDamping;
|
||||
}
|
||||
|
||||
inline void b3Body::SetLinearDamping(float32 damping)
|
||||
{
|
||||
m_linearDamping = damping;
|
||||
}
|
||||
|
||||
inline float32 b3Body::GetAngularDamping() const
|
||||
{
|
||||
return m_angularDamping;
|
||||
}
|
||||
|
||||
inline void b3Body::SetAngularDamping(float32 damping)
|
||||
{
|
||||
m_angularDamping = damping;
|
||||
}
|
||||
|
||||
inline float32 b3Body::GetGravityScale() const
|
||||
{
|
||||
return m_gravityScale;
|
||||
|
@ -79,6 +79,8 @@ b3Body::b3Body(const b3BodyDef& def, b3World* world)
|
||||
m_xf.position = m_sweep.worldCenter;
|
||||
m_xf.rotation = b3ConvertQuatToMat(m_sweep.orientation);
|
||||
|
||||
m_linearDamping = def.linearDamping;
|
||||
m_angularDamping = def.angularDamping;
|
||||
m_gravityScale = def.gravityScale;
|
||||
m_userData = def.userData;
|
||||
m_islandID = -1;
|
||||
|
@ -108,14 +108,6 @@ void b3Island::Solve(const b3Vec3& gravity, float32 dt, u32 velocityIterations,
|
||||
{
|
||||
float32 h = dt;
|
||||
|
||||
// Apply some damping.
|
||||
// ODE: dv/dt + c * v = 0
|
||||
// Solution: v(t) = v0 * exp(-c * t)
|
||||
// Step: v(t + dt) = v0 * exp(-c * (t + dt)) = v0 * exp(-c * t) * exp(-c * dt) = v * exp(-c * dt)
|
||||
// v2 = exp(-c * dt) * v1
|
||||
const float32 k_d = 0.005f;
|
||||
float32 d = exp(-k_d * h);
|
||||
|
||||
// 1. Integrate velocities
|
||||
for (u32 i = 0; i < m_bodyCount; ++i)
|
||||
{
|
||||
@ -165,9 +157,15 @@ void b3Island::Solve(const b3Vec3& gravity, float32 dt, u32 velocityIterations,
|
||||
// Clear torques
|
||||
b->m_torque.SetZero();
|
||||
|
||||
// Apply damping
|
||||
v *= d;
|
||||
w *= d;
|
||||
// Apply local damping.
|
||||
// ODE: dv/dt + c * v = 0
|
||||
// Solution: v(t) = v0 * exp(-c * t)
|
||||
// Step: v(t + dt) = v0 * exp(-c * (t + dt)) = v0 * exp(-c * t) * exp(-c * dt) = v * exp(-c * dt)
|
||||
// v2 = exp(-c * dt) * v1
|
||||
// Pad<61> approximation:
|
||||
// 1 / (1 + c * dt)
|
||||
v *= 1.0f / (1.0f + h * b->m_linearDamping);
|
||||
w *= 1.0f / (1.0f + h * b->m_angularDamping);
|
||||
}
|
||||
|
||||
m_velocities[i].v = v;
|
||||
|
Reference in New Issue
Block a user