/* * Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #ifndef B3_STATIC_TREE_H #define B3_STATIC_TREE_H #include #include #include #include #define NULL_NODE_S (0xFFFFFFFF) // AABB tree for static AABBs. class b3StaticTree { public: b3StaticTree(); ~b3StaticTree(); // Build this tree from a list of AABBs. void Build(const b3AABB3* aabbs, u32 count); // Get the AABB of a given proxy. const b3AABB3& GetAABB(u32 proxyId) const; // Get the user data associated with a given proxy. u32 GetUserData(u32 proxyId) const; // Report the client callback all AABBs that are overlapping with // the given AABB. The client callback must return true if the query // must be stopped or false to continue looking for more overlapping pairs. template void QueryAABB(T* callback, const b3AABB3& aabb) const; // Report the client callback all AABBs that are overlapping with // the given ray. The client callback must return the new intersection fraction // (real). If the fraction == 0 then the query is cancelled immediatly. template void RayCast(T* callback, const b3RayCastInput& input) const; // Draw this tree. void Draw(b3Draw* draw) const; u32 GetSize() const; private : // A node in a static tree. struct b3Node { b3AABB3 aabb; u32 child1; union { u32 child2; u32 index; }; // Is this node a leaf? bool IsLeaf() const { return child1 == NULL_NODE_S; } }; // void Build(const b3AABB3* set, b3Node* node, u32* indices, u32 count, u32 minObjectsPerLeaf, u32 nodeCapacity, u32& leafCount, u32& internalCount); // The nodes of this tree stored in an array. u32 m_nodeCount; b3Node* m_nodes; }; inline const b3AABB3& b3StaticTree::GetAABB(u32 proxyId) const { B3_ASSERT(proxyId < m_nodeCount); return m_nodes[proxyId].aabb; } inline u32 b3StaticTree::GetUserData(u32 proxyId) const { B3_ASSERT(proxyId < m_nodeCount); B3_ASSERT(m_nodes[proxyId].IsLeaf()); return m_nodes[proxyId].index; } template inline void b3StaticTree::QueryAABB(T* callback, const b3AABB3& aabb) const { if (m_nodeCount == 0) { return; } u32 root = 0; b3Stack stack; stack.Push(root); while (stack.IsEmpty() == false) { u32 nodeIndex = stack.Top(); if (nodeIndex == NULL_NODE_S) { continue; } stack.Pop(); const b3Node* node = m_nodes + nodeIndex; if (b3TestOverlap(node->aabb, aabb) == true) { if (node->IsLeaf() == true) { if (callback->Report(nodeIndex) == false) { return; } } else { stack.Push(node->child1); stack.Push(node->child2); } } } } template inline void b3StaticTree::RayCast(T* callback, const b3RayCastInput& input) const { if (m_nodeCount == 0) { return; } b3Vec3 p1 = input.p1; b3Vec3 p2 = input.p2; b3Vec3 d = p2 - p1; float32 maxFraction = input.maxFraction; // Ensure non-degenerate segment. B3_ASSERT(b3Dot(d, d) > B3_EPSILON * B3_EPSILON); u32 root = 0; b3Stack stack; stack.Push(root); while (stack.IsEmpty() == false) { i32 nodeIndex = stack.Top(); stack.Pop(); if (nodeIndex == NULL_NODE_S) { continue; } const b3Node* node = m_nodes + nodeIndex; float32 minFraction = 0.0f; if (node->aabb.TestRay(p1, p2, maxFraction, minFraction) == true) { if (node->IsLeaf() == true) { b3RayCastInput subInput; subInput.p1 = input.p1; subInput.p2 = input.p2; subInput.maxFraction = maxFraction; float32 newFraction = callback->Report(subInput, nodeIndex); if (newFraction == 0.0f) { // The client has stopped the query. return; } } else { stack.Push(node->child1); stack.Push(node->child2); } } } } inline u32 b3StaticTree::GetSize() const { u32 size = 0; size += sizeof(b3StaticTree); size += m_nodeCount * sizeof(b3Node); return size; } #endif