bounce/examples/testbed/tests/mass_spring.h
2019-02-26 16:41:28 -03:00

158 lines
3.4 KiB
C++

/*
* Copyright (c) 2016-2019 Irlan Robson https://irlanrobson.github.io
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef MASS_SPRING_H
#define MASS_SPRING_H
class MassSpring : public Test
{
public:
MassSpring()
{
m_x.Set(0.0f, 5.0f, 0.0f);
m_v.SetZero();
m_k = 100.0f;
m_iterations = 0;
}
void Solve(float32 h)
{
// ODE
// f(Y) = dY / dt = [v]
// [-k * x]
// 1. Apply Implicit Euler
// Y(t + h) = Y(t) + h * f( Y(t + h) )
// G( Y(t + h) ) = Y(t + h) - Y(t) - h * f( Y(t + h) ) = 0
// 2. Solve G = 0
// Newton-Raphson Iteration
//
// Y(t + h) =
// Y(t + h)_0 - G( Y(t + h)_0 ) / G'( Y(t + h)_0 ) =
// Y(t + h)_0 - G'( Y(t + h)_0 )^-1 * ( Y(t + h)_0 - Y(t) - h * f( Y(t + h)_0 )
// G'( Y ) = I - h * del_f / del_Y
// del_f / del_Y = [del_f1 / del_x del_f1 / del_v] = [0 I]
// [del_f2 / del_x del_f2 / del_v] [-k * I 0]
// G'( Y ) = [I 0] - [0 h * I] = [I -h * I]
// [0 I] [-h * k * I 0] [h * k * I I]
// Compute Jacobian
b3Mat33 I = b3Mat33_identity;
b3Mat33 A, B, C, D;
A = I;
B = -h * I;
C = h * m_k * I;
D = I;
// Invert
// Block matrix inversion
b3Mat33 invD = b3Inverse(D);
b3Mat33 B_invD = B * invD;
b3Mat33 invJ_A = b3Inverse(A - B_invD * C);
b3Mat33 invJ_B = -invJ_A * B_invD;
b3Mat33 invJ_C = -invD * C * invJ_A;
b3Mat33 invJ_D = invD + invD * C * invJ_A * B_invD;
// Initial guess
b3Vec3 f1 = m_v;
b3Vec3 f2 = -m_k * m_x;
b3Vec3 Y1 = m_x + h * f1;
b3Vec3 Y2 = m_v + h * f2;
const float32 kTol = 0.05f;
const u32 kMaxIterations = 20;
float32 eps0 = 0.0f;
float32 eps1 = B3_MAX_FLOAT;
m_iterations = 0;
while (m_iterations < kMaxIterations && eps1 > kTol * kTol * eps0)
{
// Evaluate f(Y_n-1)
f1 = Y2;
f2 = -m_k * Y1;
// Residual vector
b3Vec3 G1 = Y1 - m_x - h * f1;
b3Vec3 G2 = Y2 - m_v - h * f2;
eps1 = b3Dot(G1, G1) + b3Dot(G2, G2);
// Solve Ax = b
b3Vec3 x1 = invJ_A * G1 + invJ_B * G2;
b3Vec3 x2 = invJ_C * G1 + invJ_D * G2;
Y1 -= x1;
Y2 -= x2;
++m_iterations;
}
// Update state
m_x = Y1;
m_v = Y2;
}
void Step()
{
float32 h = g_testSettings->inv_hertz;
Solve(h);
g_draw->DrawSolidSphere(m_x, 0.25f, b3Color_white);
g_draw->DrawSegment(b3Vec3_zero, m_x, b3Color_white);
g_draw->DrawString(b3Color_white, "Iterations = %u", m_iterations);
float32 E = 0.5f * b3Dot(m_v, m_v);
g_draw->DrawString(b3Color_white, "E = %f", E);
}
static Test* Create()
{
return new MassSpring();
}
// State
b3Vec3 m_x, m_v;
// Stiffness
float32 m_k;
//
u32 m_iterations;
};
#endif