Files
bounce/src/bounce/quickhull/qh_hull.cpp
2019-02-26 16:41:28 -03:00

1534 lines
29 KiB
C++

/*
* Copyright (c) 2016-2019 Irlan Robson https://irlanrobson.github.io
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include <bounce/quickhull/qh_hull.h>
#include <bounce/common/draw.h>
static float32 qhFindAABB(u32 iMin[3], u32 iMax[3], const b3Vec3* vs, u32 count)
{
b3Vec3 min(B3_MAX_FLOAT, B3_MAX_FLOAT, B3_MAX_FLOAT);
iMin[0] = 0;
iMin[1] = 0;
iMin[2] = 0;
b3Vec3 max(-B3_MAX_FLOAT, -B3_MAX_FLOAT, -B3_MAX_FLOAT);
iMax[0] = 0;
iMax[1] = 0;
iMax[2] = 0;
for (u32 i = 0; i < count; ++i)
{
b3Vec3 v = vs[i];
for (u32 j = 0; j < 3; ++j)
{
if (v[j] < min[j])
{
min[j] = v[j];
iMin[j] = i;
}
if (v[j] > max[j])
{
max[j] = v[j];
iMax[j] = i;
}
}
}
return 3.0f * (b3Abs(max.x) + b3Abs(max.y) + b3Abs(max.z)) * B3_EPSILON;
}
qhHull::qhHull()
{
m_vertexList.head = NULL;
m_vertexList.count = 0;
m_faceList.head = NULL;
m_faceList.count = 0;
m_buffer = NULL;
m_vertexCapacity = 0;
m_vertexCount = 0;
m_edgeCapacity = 0;
m_edgeCount = 0;
m_faceCapacity = 0;
m_faceCount = 0;
}
qhHull::~qhHull()
{
qhVertex* v = m_vertexList.head;
while (v)
{
qhVertex* v0 = v;
v = v->next;
FreeVertex(v0);
}
B3_ASSERT(m_vertexCount == 0);
qhFace* f = m_faceList.head;
while (f)
{
qhFace* f0 = f;
f = f->next;
qhHalfEdge* e = f0->edge;
do
{
qhHalfEdge* e0 = e;
e = e->next;
FreeEdge(e0);
} while (e != f0->edge);
FreeFace(f0);
}
B3_ASSERT(m_edgeCount == 0);
B3_ASSERT(m_faceCount == 0);
b3Free(m_buffer);
}
void qhHull::Construct(const b3Vec3* vs, u32 count)
{
B3_ASSERT(m_buffer == NULL);
B3_ASSERT(count > 0 && count >= 4);
// Compute memory buffer size for the worst case.
u32 size = 0;
// Hull using Euler's Formula
u32 V = count;
u32 E = 3 * V - 6;
u32 HE = 2 * E;
u32 F = 2 * V - 4;
size += V * sizeof(qhVertex);
size += HE * sizeof(qhHalfEdge);
size += F * sizeof(qhFace);
// Horizon
size += HE * sizeof(qhHalfEdge*);
// Saved horizon vertices
// One vertex per horizon edge
size += HE * sizeof(qhVertex*);
// Saved conflict vertices
size += V * sizeof(qhVertex*);
// New Faces
// One face per horizon edge
size += HE * sizeof(qhFace*);
// Allocate memory buffer
m_buffer = b3Alloc(size);
// Initialize free lists
m_vertexCapacity = V;
m_vertexCount = m_vertexCapacity;
m_freeVertices = NULL;
qhVertex* vertices = (qhVertex*)m_buffer;
for (u32 i = 0; i < V; ++i)
{
vertices[i].active = true;
FreeVertex(vertices + i);
}
B3_ASSERT(m_vertexCount == 0);
m_edgeCapacity = HE;
m_edgeCount = m_edgeCapacity;
m_freeEdges = NULL;
qhHalfEdge* edges = (qhHalfEdge*)((u8*)vertices + V * sizeof(qhVertex));
for (u32 i = 0; i < HE; ++i)
{
edges[i].active = true;
FreeEdge(edges + i);
}
B3_ASSERT(m_edgeCount == 0);
m_faceCapacity = F;
m_faceCount = m_faceCapacity;
m_freeFaces = NULL;
qhFace* faces = (qhFace*)((u8*)edges + HE * sizeof(qhHalfEdge));
for (u32 i = 0; i < F; ++i)
{
qhFace* f = faces + i;
f->conflictList.head = NULL;
f->conflictList.count = 0;
f->active = true;
FreeFace(f);
}
B3_ASSERT(m_faceCount == 0);
m_horizon = (qhHalfEdge**)((u8*)faces + F * sizeof(qhFace));
m_horizonCount = 0;
m_horizonVertices = (qhVertex**)((u8*)m_horizon + HE * sizeof(qhHalfEdge*));
m_conflictVertices = (qhVertex**)((u8*)m_horizonVertices + HE * sizeof(qhVertex*));
m_conflictCount = 0;
m_newFaces = (qhFace**)((u8*)m_conflictVertices + V * sizeof(qhVertex*));
m_newFaceCount = 0;
m_iterations = 0;
// Build initial tetrahedron
if (!BuildInitialHull(vs, count))
{
return;
}
// Run Quickhull
qhVertex* eye = FindEyeVertex();
while (eye)
{
Validate();
ValidateConvexity();
AddEyeVertex(eye);
eye = FindEyeVertex();
++m_iterations;
}
Validate();
ValidateConvexity();
#if 0
// Ensure the hull contains the original vertex set
for (u32 i = 0; i < count; ++i)
{
b3Vec3 v = vs[i];
for (qhFace* f = m_faceList.head; f; f = f->next)
{
float32 d = b3Distance(v, f->plane);
B3_ASSERT(d < m_tolerance);
}
}
#endif
}
bool qhHull::BuildInitialHull(const b3Vec3* vertices, u32 vertexCount)
{
if (vertexCount < 4)
{
B3_ASSERT(false);
return false;
}
u32 i1 = 0, i2 = 0;
{
// Find the points that maximizes the distance along the
// canonical axes.
// Also store a tolerance for coplanarity checks.
u32 aabbMin[3], aabbMax[3];
m_tolerance = qhFindAABB(aabbMin, aabbMax, vertices, vertexCount);
// Find the longest segment.
float32 d0 = 0.0f;
for (u32 i = 0; i < 3; ++i)
{
b3Vec3 A = vertices[aabbMin[i]];
b3Vec3 B = vertices[aabbMax[i]];
float32 d = b3DistanceSquared(A, B);
if (d > d0)
{
d0 = d;
i1 = aabbMin[i];
i2 = aabbMax[i];
}
}
// Coincidence check
if (d0 <= B3_EPSILON * B3_EPSILON)
{
B3_ASSERT(false);
return false;
}
}
B3_ASSERT(i1 != i2);
b3Vec3 A = vertices[i1];
b3Vec3 B = vertices[i2];
u32 i3 = 0;
{
// Find the triangle which has the largest area.
float32 a0 = 0.0f;
for (u32 i = 0; i < vertexCount; ++i)
{
if (i == i1 || i == i2)
{
continue;
}
b3Vec3 C = vertices[i];
float32 a = b3AreaSquared(A, B, C);
if (a > a0)
{
a0 = a;
i3 = i;
}
}
// Colinear check.
if (a0 <= (2.0f * B3_EPSILON) * (2.0f * B3_EPSILON))
{
B3_ASSERT(false);
return false;
}
}
B3_ASSERT(i3 != i1 && i3 != i2);
b3Vec3 C = vertices[i3];
b3Vec3 N = b3Cross(B - A, C - A);
N.Normalize();
b3Plane plane(N, A);
u32 i4 = 0;
{
// Find the furthest point from the triangle plane.
float32 d0 = 0.0f;
for (u32 i = 0; i < vertexCount; ++i)
{
if (i == i1 || i == i2 || i == i3)
{
continue;
}
b3Vec3 D = vertices[i];
float32 d = b3Abs(b3Distance(D, plane));
if (d > d0)
{
d0 = d;
i4 = i;
}
}
// Coplanar check.
if (d0 <= m_tolerance)
{
B3_ASSERT(false);
return false;
}
}
B3_ASSERT(i4 != i1 && i4 != i2 && i4 != i3);
// Add okay simplex to the hull.
b3Vec3 D = vertices[i4];
qhVertex* v1 = AddVertex(A);
qhVertex* v2 = AddVertex(B);
qhVertex* v3 = AddVertex(C);
qhVertex* v4 = AddVertex(D);
if (b3Distance(D, plane) < 0.0f)
{
AddFace(v1, v2, v3);
AddFace(v4, v2, v1);
AddFace(v4, v3, v2);
AddFace(v4, v1, v3);
}
else
{
// Ensure CCW order.
AddFace(v1, v3, v2);
AddFace(v4, v1, v2);
AddFace(v4, v2, v3);
AddFace(v4, v3, v1);
}
// Connectivity check.
Validate();
// Add remaining points to the conflict lists on each face.
for (u32 i = 0; i < vertexCount; ++i)
{
// Skip hull vertices.
if (i == i1 || i == i2 || i == i3 || i == i4)
{
continue;
}
b3Vec3 p = vertices[i];
// Ignore internal points since they can't be in the hull.
float32 d0 = m_tolerance;
qhFace* f0 = NULL;
for (qhFace* f = m_faceList.head; f != NULL; f = f->next)
{
float32 d = b3Distance(p, f->plane);
if (d > d0)
{
d0 = d;
f0 = f;
}
}
if (f0)
{
qhVertex* v = AllocateVertex();
v->position = p;
v->conflictFace = f0;
f0->conflictList.PushFront(v);
}
}
return true;
}
qhVertex* qhHull::FindEyeVertex() const
{
// Find the furthest conflict point.
float32 d0 = m_tolerance;
qhVertex* v0 = NULL;
for (qhFace* f = m_faceList.head; f != NULL; f = f->next)
{
for (qhVertex* v = f->conflictList.head; v != NULL; v = v->next)
{
float32 d = b3Distance(v->position, f->plane);
if (d > d0)
{
d0 = d;
v0 = v;
}
}
}
return v0;
}
void qhHull::AddEyeVertex(qhVertex* eye)
{
FindHorizon(eye);
AddNewFaces(eye);
MergeNewFaces();
ResolveOrphans();
}
void qhHull::FindHorizon(qhVertex* eye)
{
// Mark faces
for (qhFace* face = m_faceList.head; face != NULL; face = face->next)
{
float32 d = b3Distance(eye->position, face->plane);
if (d > m_tolerance)
{
face->mark = qhFaceMark::e_visible;
}
else
{
face->mark = qhFaceMark::e_invisible;
}
}
// Find the horizon
m_horizonCount = 0;
for (qhFace* face = m_faceList.head; face != NULL; face = face->next)
{
if (face->mark == qhFaceMark::e_invisible)
{
continue;
}
qhHalfEdge* begin = face->edge;
qhHalfEdge* edge = begin;
do
{
qhHalfEdge* twin = edge->twin;
qhFace* other = twin->face;
if (other->mark == qhFaceMark::e_invisible)
{
m_horizon[m_horizonCount++] = edge;
}
edge = edge->next;
} while (edge != begin);
}
// Sort the horizon in CCW order
B3_ASSERT(m_horizonCount > 0);
for (u32 i = 0; i < m_horizonCount - 1; ++i)
{
qhHalfEdge* e1 = m_horizon[i]->twin;
qhVertex* v1 = e1->tail;
for (u32 j = i + 1; j < m_horizonCount; ++j)
{
// Ensure unique edges
B3_ASSERT(m_horizon[i] != m_horizon[j]);
qhHalfEdge* e2 = m_horizon[j];
qhVertex* v2 = e2->tail;
if (v1 == v2)
{
b3Swap(m_horizon[j], m_horizon[i + 1]);
break;
}
}
}
}
void qhHull::AddNewFaces(qhVertex* eye)
{
// Ensure CCW horizon order.
// Usually it can fail hit if face merging is disable.
B3_ASSERT(m_horizonCount > 0);
for (u32 i = 0; i < m_horizonCount; ++i)
{
qhHalfEdge* e1 = m_horizon[i]->twin;
u32 j = i + 1 < m_horizonCount ? i + 1 : 0;
qhHalfEdge* e2 = m_horizon[j];
B3_ASSERT(e1->tail == e2->tail);
}
// Save horizon vertices
for (u32 i = 0; i < m_horizonCount; ++i)
{
qhHalfEdge* edge = m_horizon[i];
m_horizonVertices[i] = edge->tail;
}
// Remove the eye vertex from the conflict list
b3Vec3 eyePosition = eye->position;
eye->conflictFace->conflictList.Remove(eye);
FreeVertex(eye);
// Add the eye point to the hull
qhVertex* v1 = AddVertex(eyePosition);
// Save conflict vertices
m_conflictCount = 0;
// Remove visible faces
qhFace* f = m_faceList.head;
while (f)
{
// Skip invisible faces.
if (f->mark == qhFaceMark::e_invisible)
{
f = f->next;
continue;
}
qhVertex* v = f->conflictList.head;
while (v)
{
// Save vertex
m_conflictVertices[m_conflictCount++] = v;
// Remove vertex from face
v->conflictFace = NULL;
v = f->conflictList.Remove(v);
}
// Remove face
f = RemoveFace(f);
}
// Add new faces to the hull
m_newFaceCount = 0;
for (u32 i = 0; i < m_horizonCount; ++i)
{
u32 j = i + 1 < m_horizonCount ? i + 1 : 0;
qhVertex* v2 = m_horizonVertices[i];
qhVertex* v3 = m_horizonVertices[j];
m_newFaces[m_newFaceCount++] = AddFace(v1, v2, v3);
}
}
void qhHull::ResolveOrphans()
{
// Move the orphaned conflict vertices into the new faces
// Remove internal conflict vertices
for (u32 i = 0; i < m_conflictCount; ++i)
{
qhVertex* v = m_conflictVertices[i];
b3Vec3 p = v->position;
float32 d0 = m_tolerance;
qhFace* f0 = NULL;
for (u32 j = 0; j < m_newFaceCount; ++j)
{
qhFace* nf = m_newFaces[j];
// Was the face deleted due to merging?
if (nf->active == false)
{
continue;
}
float32 d = b3Distance(p, nf->plane);
if (d > d0)
{
d0 = d;
f0 = nf;
}
}
if (f0)
{
// Add conflict vertex to the new face
f0->conflictList.PushFront(v);
v->conflictFace = f0;
}
else
{
// Remove conflict vertex
FreeVertex(v);
}
}
}
qhVertex* qhHull::AddVertex(const b3Vec3& position)
{
qhVertex* v = AllocateVertex();
v->position = position;
v->conflictFace = NULL;
m_vertexList.PushFront(v);
return v;
}
qhHalfEdge* qhHull::FindHalfEdge(const qhVertex* v1, const qhVertex* v2) const
{
for (qhFace* face = m_faceList.head; face != NULL; face = face->next)
{
qhHalfEdge* e = face->edge;
do
{
B3_ASSERT(e->active == true);
B3_ASSERT(e->twin != NULL);
B3_ASSERT(e->twin->active == true);
if (e->tail == v1 && e->twin->tail == v2)
{
return e;
}
if (e->tail == v2 && e->twin->tail == v1)
{
return e->twin;
}
e = e->next;
} while (e != face->edge);
}
return NULL;
}
static B3_FORCE_INLINE b3Vec3 b3Newell(const b3Vec3& a, const b3Vec3& b)
{
return b3Vec3((a.y - b.y) * (a.z + b.z), (a.z - b.z) * (a.x + b.x), (a.x - b.x) * (a.y + b.y));
}
// Compute face centroid, normal, and area
static void b3ResetFaceData(qhFace* face)
{
// Compute polygon centroid
b3Vec3 c;
c.SetZero();
u32 count = 0;
qhHalfEdge* e = face->edge;
do
{
b3Vec3 v = e->tail->position;
c += v;
++count;
e = e->next;
} while (e != face->edge);
B3_ASSERT(count >= 3);
c /= float32(count);
// Compute normal
b3Vec3 n;
n.SetZero();
e = face->edge;
do
{
b3Vec3 v1 = e->tail->position;
b3Vec3 v2 = e->next->tail->position;
// Shift the polygon origin to the centroid
v1 -= c;
v2 -= c;
// Apply Newell's method
n += b3Newell(v1, v2);
e = e->next;
} while (e != face->edge);
// Centroid
face->center = c;
float32 len = b3Length(n);
B3_ASSERT(len > B3_EPSILON);
n /= len;
// Area
face->area = 0.5f * len;
// Normal
face->plane.normal = n;
face->plane.offset = b3Dot(n, c);
}
static u32 b3VertexCount(const qhFace* face)
{
u32 n = 0;
qhHalfEdge* e = face->edge;
do
{
++n;
e = e->next;
} while (e != face->edge);
return n;
}
qhHalfEdge* qhHull::FixMerge(qhFace* face1, qhHalfEdge* ein)
{
qhHalfEdge* eout = ein->next;
B3_ASSERT(ein->twin->face == eout->twin->face);
qhFace* face3 = ein->twin->face;
u32 count = b3VertexCount(face3);
// Is the face 3 a triangle?
if (count == 3)
{
qhHalfEdge* nextEdge = eout->next;
// Unlink incoming edge from face 1
B3_ASSERT(ein->prev->next == ein);
ein->prev->next = ein->twin->next;
// Unlink incoming edge twin from face 3
B3_ASSERT(ein->twin->next->prev == ein->twin);
ein->twin->next->prev = ein->prev;
B3_ASSERT(ein->face == face1);
if (face1->edge == ein)
{
face1->edge = ein->prev;
}
// Set incoming edge twin face reference the face 1
B3_ASSERT(ein->twin->next->face == face3);
ein->twin->next->face = face1;
// Unlink outgoing edge from face 1
B3_ASSERT(eout->next->prev == eout);
eout->next->prev = eout->twin->prev;
B3_ASSERT(eout->twin->prev->next == eout->twin);
eout->twin->prev->next = eout->next;
B3_ASSERT(eout->face == face1);
if (face1->edge == eout)
{
face1->edge = eout->next;
}
// Reset face 1 data
b3ResetFaceData(face1);
// Validate face 1
Validate(face1);
// Remove outgoing vertex
m_vertexList.Remove(eout->tail);
FreeVertex(eout->tail);
// Remove incoming edge
FreeEdge(ein->twin);
FreeEdge(ein);
// Remove outgoing edge
FreeEdge(eout->twin);
FreeEdge(eout);
// Move face 3 conflict vertices into face 1
qhVertex* v = face3->conflictList.head;
while (v)
{
qhVertex* v0 = v;
v = face3->conflictList.Remove(v);
face1->conflictList.PushFront(v0);
v0->conflictFace = face1;
}
// Remove face 3
m_faceList.Remove(face3);
FreeFace(face3);
// Return the next edge
return nextEdge;
}
else
{
qhHalfEdge* nextEdge = eout->next;
// Extend the incoming edge to the next vertex
B3_ASSERT(ein->twin->tail == eout->tail);
ein->twin->tail = eout->twin->tail;
// Remove outgoing vertex
m_vertexList.Remove(eout->tail);
FreeVertex(eout->tail);
// Unlink outgoing edge from face 1
B3_ASSERT(eout->prev->next == eout);
eout->prev->next = eout->next;
B3_ASSERT(eout->next->prev == eout);
eout->next->prev = eout->prev;
B3_ASSERT(eout->face == face1);
if (face1->edge == eout)
{
face1->edge = eout->next;
}
// Reset face 1 data
b3ResetFaceData(face1);
// Validate face 1
Validate(face1);
// Unlink outgoing edge twin from face 3
B3_ASSERT(eout->twin->prev->next == eout->twin);
eout->twin->prev->next = eout->twin->next;
B3_ASSERT(eout->twin->next->prev == eout->twin);
eout->twin->next->prev = eout->twin->prev;
B3_ASSERT(eout->twin->face == face3);
if (face3->edge == eout->twin)
{
face3->edge = eout->twin->next;
}
// Remove outgoing edge
FreeEdge(eout->twin);
FreeEdge(eout);
// Return the next edge
return nextEdge;
}
// Return the next edge to the given edge
return eout;
}
qhFace* qhHull::RemoveEdge(qhHalfEdge* edge)
{
B3_ASSERT(edge->active == true);
qhFace* face1 = edge->face;
B3_ASSERT(face1->active == true);
B3_ASSERT(edge->twin->active == true);
qhFace* face2 = edge->twin->face;
// Edge must be shared.
B3_ASSERT(face2 != NULL);
B3_ASSERT(face2->active == true);
B3_ASSERT(face2 != face1);
// Merge face 2 into face 1
// Set face 2 edges owner face to face 1,
// except the twin edge which will be deleted
for (qhHalfEdge* e2 = edge->twin->next; e2 != edge->twin; e2 = e2->next)
{
B3_ASSERT(e2->face == face2);
e2->face = face1;
}
// Set the face 1 to reference a non-deleted edge
B3_ASSERT(edge->face == face1);
if (face1->edge == edge)
{
face1->edge = edge->next;
}
// Unlink edge from face 1
B3_ASSERT(edge->prev->next == edge);
edge->prev->next = edge->twin->next;
B3_ASSERT(edge->next->prev == edge);
edge->next->prev = edge->twin->prev;
B3_ASSERT(edge->twin->prev->next == edge->twin);
edge->twin->prev->next = edge->next;
B3_ASSERT(edge->twin->next->prev == edge->twin);
edge->twin->next->prev = edge->prev;
// Reset face 1 data
b3ResetFaceData(face1);
// Validate face 1
Validate(face1);
// Move face 2 conflict vertices into face 1
qhVertex* v = face2->conflictList.head;
while (v)
{
qhVertex* v0 = v;
v = face2->conflictList.Remove(v);
face1->conflictList.PushFront(v0);
v0->conflictFace = face1;
}
// Remove face 2
m_faceList.Remove(face2);
FreeFace(face2);
// Remove edge
FreeEdge(edge->twin);
FreeEdge(edge);
// Repair topological errors in the face
while (FixFace(face1));
// Return face 1
return face1;
}
bool qhHull::FixFace(qhFace* face)
{
// Maintained invariants:
// - Each vertex must have at least three neighbor faces
// - Face 1 must be convex
// Search a incoming (and outgoing edge) in the face 1
// which have the same neighbour face.
qhHalfEdge* edge = NULL;
qhHalfEdge* ein = face->edge;
do
{
qhHalfEdge* eout = ein->next;
// Has the outgoing vertex become redundant?
if (ein->twin->face == eout->twin->face)
{
edge = ein;
break;
}
ein = eout;
} while (ein != face->edge);
if (edge)
{
// Remove the outgoing vertex.
FixMerge(face, edge);
return true;
}
// Topological error not found.
return false;
}
qhFace* qhHull::AddFace(qhVertex* v1, qhVertex* v2, qhVertex* v3)
{
// Each vertex must be free.
//B3_ASSERT(v1->edge == NULL);
//B3_ASSERT(v2->edge == NULL);
//B3_ASSERT(v3->edge == NULL);
qhFace* face = AllocateFace();
qhHalfEdge* e1 = FindHalfEdge(v1, v2);
if (e1 == NULL)
{
e1 = AllocateEdge();
e1->tail = v1;
e1->face = face;
e1->prev = NULL;
e1->next = NULL;
e1->twin = AllocateEdge();
e1->twin->tail = v2;
e1->twin->face = NULL;
e1->twin->prev = NULL;
e1->twin->next = NULL;
e1->twin->twin = e1;
}
else
{
// Edge must be free.
B3_ASSERT(e1->face == NULL);
e1->face = face;
B3_ASSERT(e1->tail == v1);
B3_ASSERT(e1->twin != NULL);
B3_ASSERT(e1->twin->active == true);
B3_ASSERT(e1->twin->tail == v2);
}
qhHalfEdge* e2 = FindHalfEdge(v2, v3);
if (e2 == NULL)
{
e2 = AllocateEdge();
e2->tail = v2;
e2->face = face;
e2->prev = NULL;
e2->next = NULL;
e2->twin = AllocateEdge();
e2->twin->tail = v3;
e2->twin->face = NULL;
e2->twin->prev = NULL;
e2->twin->next = NULL;
e2->twin->twin = e2;
}
else
{
// Edge must be free.
B3_ASSERT(e2->face == NULL);
e2->face = face;
B3_ASSERT(e2->tail == v2);
B3_ASSERT(e2->twin != NULL);
B3_ASSERT(e2->twin->active == true);
B3_ASSERT(e2->twin->tail == v3);
}
qhHalfEdge* e3 = FindHalfEdge(v3, v1);
if (e3 == NULL)
{
e3 = AllocateEdge();
e3->tail = v3;
e3->face = face;
e3->prev = NULL;
e3->next = NULL;
e3->twin = AllocateEdge();
e3->twin->tail = v1;
e3->twin->face = NULL;
e3->twin->prev = NULL;
e3->twin->next = NULL;
e3->twin->twin = e3;
}
else
{
// Edge must be free.
B3_ASSERT(e3->face == NULL);
e3->face = face;
B3_ASSERT(e3->tail == v3);
B3_ASSERT(e3->twin != NULL);
B3_ASSERT(e3->twin->active == true);
B3_ASSERT(e3->twin->tail == v1);
}
B3_ASSERT(e1->prev == NULL);
e1->prev = e3;
B3_ASSERT(e1->next == NULL);
e1->next = e2;
B3_ASSERT(e2->prev == NULL);
e2->prev = e1;
B3_ASSERT(e2->next == NULL);
e2->next = e3;
B3_ASSERT(e3->prev == NULL);
e3->prev = e2;
B3_ASSERT(e3->next == NULL);
e3->next = e1;
face->edge = e1;
b3ResetFaceData(face);
face->conflictList.head = NULL;
face->conflictList.count = 0;
Validate(face);
m_faceList.PushFront(face);
return face;
}
qhFace* qhHull::RemoveFace(qhFace* face)
{
// Conflict vertices must have been removed
B3_ASSERT(face->conflictList.count == 0);
// Remove half-edges
qhHalfEdge* e = face->edge;
do
{
qhHalfEdge* e0 = e;
e = e->next;
// Is the edge a boundary?
if (e0->twin->face == NULL)
{
// Edge is non-shared.
FreeEdge(e0->twin);
FreeEdge(e0);
}
else
{
// Edge is shared.
// Mark the twin edge as a boundary edge.
B3_ASSERT(e0->twin != NULL);
B3_ASSERT(e0->twin->twin == e0);
e0->face = NULL;
e0->prev = NULL;
e0->next = NULL;
}
} while (e != face->edge);
// Remove face
qhFace* nextFace = m_faceList.Remove(face);
FreeFace(face);
// Return the next face in the list of faces
return nextFace;
}
bool qhHull::MergeFace(qhFace* face1)
{
// Non-convex edge
qhHalfEdge* edge = NULL;
qhHalfEdge* e = face1->edge;
do
{
qhHalfEdge* twin = e->twin;
qhFace* face2 = twin->face;
B3_ASSERT(face2 != NULL);
B3_ASSERT(face2 != face1);
float32 d1 = b3Distance(face2->center, face1->plane);
float32 d2 = b3Distance(face1->center, face2->plane);
if (d1 < -m_tolerance && d2 < -m_tolerance)
{
// Edge is convex
e = e->next;
continue;
}
// Edge is concave or coplanar
edge = e;
break;
} while (e != face1->edge);
if (edge)
{
RemoveEdge(edge);
return true;
}
return false;
}
bool qhHull::MergeLargeFace(qhFace* face1)
{
// Find a non-convex edge
qhHalfEdge* edge = NULL;
qhHalfEdge* e = face1->edge;
B3_ASSERT(e->face == face1);
do
{
qhHalfEdge* twin = e->twin;
qhFace* face2 = twin->face;
B3_ASSERT(face2 != NULL);
B3_ASSERT(face2 != face1);
if (face1->area > face2->area)
{
// Face 1 merge
float32 d = b3Distance(face2->center, face1->plane);
if (d < -m_tolerance)
{
// Edge is convex wrt to the face 1
e = e->next;
continue;
}
// Edge is concave or coplanar wrt to the face 1
edge = e;
break;
}
else
{
// Face 2 merge
float32 d = b3Distance(face1->center, face2->plane);
if (d < -m_tolerance)
{
// Edge is convex wrt to the face 2
e = e->next;
continue;
}
// Edge is concave or coplanar wrt to the face 2
edge = e;
break;
}
e = e->next;
} while (e != face1->edge);
if (edge)
{
RemoveEdge(edge);
return true;
}
return false;
}
void qhHull::MergeNewFaces()
{
// Merge with respect to the largest face.
for (u32 i = 0; i < m_newFaceCount; ++i)
{
qhFace* face = m_newFaces[i];
// Was the face deleted due to merging?
if (face->active == false)
{
continue;
}
while (MergeLargeFace(face));
}
// Merge with respect to the both faces.
for (u32 i = 0; i < m_newFaceCount; ++i)
{
qhFace* face = m_newFaces[i];
// Was the face deleted due to merging?
if (face->active == false)
{
continue;
}
while (MergeFace(face));
}
}
void qhHull::Translate(const b3Vec3& translation)
{
// Shift vertices
for (qhVertex* v = m_vertexList.head; v != NULL; v = v->next)
{
v->position += translation;
}
// Reset face data
for (qhFace* f = m_faceList.head; f; f = f->next)
{
b3ResetFaceData(f);
}
}
void qhHull::ValidateConvexity() const
{
for (qhFace* face = m_faceList.head; face != NULL; face = face->next)
{
B3_ASSERT(face->active == true);
const qhHalfEdge* edge = face->edge;
do
{
B3_ASSERT(edge->active == true);
B3_ASSERT(edge->face == face);
B3_ASSERT(edge->twin != NULL);
B3_ASSERT(edge->twin->active == true);
qhFace* other = edge->twin->face;
// Ensure closed volume
B3_ASSERT(other != NULL);
B3_ASSERT(other->active == true);
// Ensure topological health
B3_ASSERT(face != other);
// Ensure edge convexity
float32 d1 = b3Distance(other->center, face->plane);
B3_ASSERT(d1 < -m_tolerance);
float32 d2 = b3Distance(face->center, other->plane);
B3_ASSERT(d2 < -m_tolerance);
// Ensure polygon convexity
b3Vec3 P = edge->tail->position;
b3Vec3 Q = edge->twin->tail->position;
b3Vec3 E = Q - P;
b3Vec3 D = b3Cross(E, face->plane.normal);
// Edge side plane
b3Plane plane;
plane.normal = b3Normalize(D);
plane.offset = b3Dot(plane.normal, P);
// All the other vertices must be behind the edge side plane
const qhHalfEdge* eother = edge->prev;
do
{
float32 d = b3Distance(eother->tail->position, plane);
B3_ASSERT(d <= 0.0f);
eother = eother->prev;
} while (eother != edge->next);
edge = edge->next;
} while (edge != edge);
}
}
void qhHull::Validate(const qhHalfEdge* edge) const
{
B3_ASSERT(edge->active == true);
const qhHalfEdge* twin = edge->twin;
B3_ASSERT(twin->active == true);
B3_ASSERT(twin->twin == edge);
B3_ASSERT(edge->tail->active == true);
b3Vec3 A = edge->tail->position;
B3_ASSERT(twin->tail->active == true);
b3Vec3 B = twin->tail->position;
B3_ASSERT(b3DistanceSquared(A, B) > B3_EPSILON * B3_EPSILON);
const qhHalfEdge* next = edge->next;
B3_ASSERT(next->active == true);
B3_ASSERT(twin->tail == next->tail);
{
// CCW
bool found = false;
const qhFace* face = edge->face;
const qhHalfEdge* e = face->edge;
do
{
if (e == edge)
{
found = true;
break;
}
e = e->next;
} while (e != face->edge);
B3_ASSERT(found == true);
}
{
// CW
bool found = false;
const qhFace* face = edge->face;
const qhHalfEdge* e = face->edge;
do
{
if (e == edge)
{
found = true;
break;
}
e = e->prev;
} while (e != face->edge);
B3_ASSERT(found == true);
}
}
void qhHull::Validate(const qhFace* face) const
{
B3_ASSERT(face->active == true);
// CCW
{
const qhHalfEdge* edge = face->edge;
do
{
B3_ASSERT(edge->active == true);
B3_ASSERT(edge->face == face);
B3_ASSERT(edge->twin != NULL);
B3_ASSERT(edge->twin->active == true);
if (edge->twin->face != NULL)
{
B3_ASSERT(edge->twin->face->active == true);
B3_ASSERT(edge->twin->face != face);
}
edge = edge->next;
} while (edge != face->edge);
}
// CW
{
const qhHalfEdge* edge = face->edge;
do
{
B3_ASSERT(edge->active == true);
B3_ASSERT(edge->face == face);
B3_ASSERT(edge->twin != NULL);
B3_ASSERT(edge->twin->active == true);
if (edge->twin->face != NULL)
{
B3_ASSERT(edge->twin->face->active == true);
B3_ASSERT(edge->twin->face != face);
}
edge = edge->prev;
} while (edge != face->edge);
}
{
const qhHalfEdge* edge = face->edge;
do
{
Validate(edge);
edge = edge->next;
} while (edge != face->edge);
}
}
void qhHull::Validate() const
{
for (qhVertex* vertex = m_vertexList.head; vertex != NULL; vertex = vertex->next)
{
B3_ASSERT(vertex->active == true);
}
for (qhFace* face = m_faceList.head; face != NULL; face = face->next)
{
B3_ASSERT(face->active == true);
for (qhVertex* vertex = face->conflictList.head; vertex != NULL; vertex = vertex->next)
{
B3_ASSERT(vertex->active == true);
}
// Ensure each vertex has at least three neighbor faces
qhHalfEdge* ein = face->edge;
do
{
qhHalfEdge* eout = ein->next;
B3_ASSERT(ein->twin->face != eout->twin->face);
ein = eout;
} while (ein != face->edge);
Validate(face);
}
}
void qhHull::Draw() const
{
for (qhFace* face = m_faceList.head; face != NULL; face = face->next)
{
b3Vec3 c = face->center;
b3Vec3 n = face->plane.normal;
b3Draw_draw->DrawSegment(c, c + n, b3Color(1.0f, 1.0f, 1.0f));
const qhHalfEdge* edge = face->edge;
do
{
qhVertex* v1 = face->edge->tail;
qhVertex* v2 = edge->tail;
const qhHalfEdge* next = edge->next;
qhVertex* v3 = next->tail;
b3Draw_draw->DrawSegment(v2->position, v3->position, b3Color(0.0f, 0.0f, 0.0f, 1.0f));
b3Draw_draw->DrawSolidTriangle(n, v1->position, v2->position, v3->position, b3Color(1.0f, 1.0f, 1.0f, 0.5f));
edge = next;
} while (edge->next != face->edge);
qhVertex* v = face->conflictList.head;
while (v)
{
b3Draw_draw->DrawPoint(v->position, 4.0f, b3Color(1.0f, 1.0f, 0.0f));
b3Draw_draw->DrawSegment(c, v->position, b3Color(1.0f, 1.0f, 0.0f));
v = v->next;
}
}
}