149 lines
4.2 KiB
C

/*
* Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_TIME_STEP_H
#define B3_TIME_STEP_H
#include <bounce/common/math/vec3.h>
#include <bounce/common/math/mat33.h>
#include <bounce/common/math/quat.h>
struct b3Position
{
b3Vec3 x;
b3Quat q;
};
struct b3Velocity
{
b3Vec3 v;
b3Vec3 w;
};
struct b3SolverData
{
b3Position* positions;
b3Velocity* velocities;
float32 dt;
float32 invdt;
};
enum b3LimitState
{
e_inactiveLimit,
e_atLowerLimit,
e_atUpperLimit,
e_equalLimits
};
// Move an inertia tensor from the its current center
// to another.
inline b3Mat33 b3MoveToCOM(const b3Mat33& inertia, float32 mass, const b3Vec3& center)
{
// Paralell Axis Theorem
// J = I + m * dot(r, r) * E - outer(r, r)
// where
// I - inertia about the center of mass
// m - mass
// E - identity 3x3
// r - displacement vector from the current com to the new com
// J - inertia tensor at the new center of rotation
float32 dd = b3Dot(center, center);
b3Mat33 A = b3Diagonal(mass * dd);
b3Mat33 B = b3Outer(center, center);
return inertia + A - B;
}
// Compute the inertia matrix of a body measured in
// inertial frame (variable over time) given the
// inertia matrix in body-fixed frame (constant)
// and a rotation matrix representing the orientation
// of the body frame relative to the inertial frame.
inline b3Mat33 b3RotateToFrame(const b3Mat33& inertia, const b3Mat33& rotation)
{
return rotation * inertia * b3Transpose(rotation);
}
// Compute the time derivative of an orientation given
// the angular velocity of the rotating frame represented by the orientation.
inline b3Quat b3Derivative(const b3Quat& orientation, const b3Vec3& velocity)
{
b3Quat xf(0.5f * velocity.x, 0.5f * velocity.y, 0.5f * velocity.z, 0.0f);
return xf * orientation;
}
// Integrate an orientation over a time step given
// the current orientation, angular velocity of the rotating frame
// represented by the orientation, and the time step dt.
inline b3Quat b3Integrate(const b3Quat& orientation, const b3Vec3& velocity, float32 dt)
{
// Integrate from [t0, t0 + h] using the explicit Euler method
b3Quat qdot = b3Derivative(orientation, velocity);
b3Quat integral = dt * qdot;
return orientation + integral;
}
// Compute the time derivative of an orientation given
// the angular velocity of the rotating frame represented by the orientation.
inline b3Mat33 b3Derivative(const b3Mat33& orientation, const b3Vec3& velocity)
{
// Rate of change of a basis in a rotating frame:
// xdot = cross(w, ex)
// ydot = cross(w, ey)
// zdot = cross(w, ez)
// This should yield in:
// qdot = skew(velocity) * q
b3Mat33 xf = b3Skew(velocity);
return xf * orientation;
}
// Integrate an orientation over a time step given
// the current orientation, angular velocity of the rotating frame
// represented by the orientation, and the time step dt.
inline b3Mat33 b3Integrate(const b3Mat33& orientation, const b3Vec3& velocity, float32 dt)
{
b3Mat33 qdot = b3Derivative(orientation, velocity);
b3Mat33 integral = dt * qdot;
return orientation + integral;
}
// These structures contain the elapsed time it took
// to run particular method.
struct b3CollideProfile
{
float64 broadphase;
float64 narrowphase;
};
struct b3SolverProfile
{
float64 initializeContacts;
float64 initializeJoints;
float64 solveVelocity;
float64 solvePosition;
};
struct b3Profile
{
float64 total;
b3CollideProfile collide;
b3SolverProfile solver;
};
#endif