191 lines
4.8 KiB
C
191 lines
4.8 KiB
C
/*
|
|
* Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#ifndef B3_GEOMETRY_H
|
|
#define B3_GEOMETRY_H
|
|
|
|
#include <bounce\common\math\math.h>
|
|
#include <bounce\common\math\transform.h>
|
|
|
|
// A triangle in indexed form.
|
|
struct b3Triangle
|
|
{
|
|
// Does nothing for performance.
|
|
b3Triangle() { }
|
|
|
|
// Set this triangle from three vertices.
|
|
b3Triangle(u32 _v1, u32 _v2, u32 _v3)
|
|
{
|
|
v1 = _v1;
|
|
v2 = _v2;
|
|
v3 = _v3;
|
|
}
|
|
|
|
// Set this triangle from three vertices.
|
|
void Set(u32 _v1, u32 _v2, u32 _v3)
|
|
{
|
|
v1 = _v1;
|
|
v2 = _v2;
|
|
v3 = _v3;
|
|
}
|
|
|
|
// Test if this triangle contains a given vertex.
|
|
bool TestVertex(u32 v) const
|
|
{
|
|
return v == v1 || v == v2 || v == v3;
|
|
}
|
|
|
|
// Test if this triangle contains two vertices.
|
|
bool TestEdge(u32 _v1, u32 _v2) const
|
|
{
|
|
return TestVertex(_v1) && TestVertex(_v2);
|
|
}
|
|
|
|
u32 v1, v2, v3;
|
|
};
|
|
|
|
// A plane in constant normal form.
|
|
// dot(n, p) - d = 0.
|
|
struct b3Plane
|
|
{
|
|
// Does nothing for performance.
|
|
b3Plane() { }
|
|
|
|
// Set this plane from a normal and a signed distance from its origin.
|
|
b3Plane(const b3Vec3& _normal, float32 _offset)
|
|
{
|
|
normal = _normal;
|
|
offset = _offset;
|
|
}
|
|
|
|
// Set this plane from a normal and a point on the plane.
|
|
b3Plane(const b3Vec3& _normal, const b3Vec3& _point)
|
|
{
|
|
normal = _normal;
|
|
offset = b3Dot(_normal, _point);
|
|
}
|
|
|
|
// Compute this plane from three non-colinear points.
|
|
b3Plane(const b3Vec3& A, const b3Vec3& B, const b3Vec3& C)
|
|
{
|
|
b3Vec3 N = b3Cross(B - A, C - A);
|
|
normal = b3Normalize(N);
|
|
offset = b3Dot(normal, A);
|
|
}
|
|
|
|
b3Vec3 normal;
|
|
float32 offset;
|
|
};
|
|
|
|
// Transform a plane by a given frame.
|
|
inline b3Plane operator*(const b3Transform& T, const b3Plane& plane)
|
|
{
|
|
b3Vec3 normal = b3Mul(T.rotation, plane.normal);
|
|
return b3Plane(normal, plane.offset + b3Dot(normal, T.position));
|
|
}
|
|
|
|
// Transform a plane by a given frame.
|
|
inline b3Plane b3Mul(const b3Transform& T, const b3Plane& plane)
|
|
{
|
|
b3Vec3 normal = b3Mul(T.rotation, plane.normal);
|
|
return b3Plane(normal, plane.offset + b3Dot(normal, T.position));
|
|
}
|
|
|
|
inline float32 b3Distance(const b3Vec3& P, const b3Plane& plane)
|
|
{
|
|
return b3Dot(plane.normal, P) - plane.offset;
|
|
}
|
|
|
|
// Project a point onto a plane.
|
|
// The plane must be normalized.
|
|
inline b3Vec3 b3Project(const b3Vec3& P, const b3Plane& plane)
|
|
{
|
|
float32 fraction = b3Distance(P, plane);
|
|
return P - fraction * plane.normal;
|
|
}
|
|
|
|
// Compute barycentric coordinates (u, v) for point Q to segment AB.
|
|
// The last output value is the divisor.
|
|
inline void b3Barycentric(float32 out[3],
|
|
const b3Vec3& A, const b3Vec3& B,
|
|
const b3Vec3& Q)
|
|
{
|
|
b3Vec3 AB = B - A;
|
|
b3Vec3 QA = A - Q;
|
|
b3Vec3 QB = B - Q;
|
|
//float32 divisor = b3Dot(AB, AB);
|
|
out[0] = b3Dot(QB, AB);
|
|
out[1] = -b3Dot(QA, AB);
|
|
out[2] = out[0] + out[1];
|
|
}
|
|
|
|
// Compute barycentric coordinates (u, v, w) for point Q to triangle ABC.
|
|
// The last output value is the divisor.
|
|
inline void b3Barycentric(float32 out[4],
|
|
const b3Vec3& A, const b3Vec3& B, const b3Vec3& C,
|
|
const b3Vec3& Q)
|
|
{
|
|
// RTCD, 140.
|
|
b3Vec3 AB = B - A;
|
|
b3Vec3 AC = C - A;
|
|
|
|
b3Vec3 QA = A - Q;
|
|
b3Vec3 QB = B - Q;
|
|
b3Vec3 QC = C - Q;
|
|
|
|
b3Vec3 QB_x_QC = b3Cross(QB, QC);
|
|
b3Vec3 QC_x_QA = b3Cross(QC, QA);
|
|
b3Vec3 QA_x_QB = b3Cross(QA, QB);
|
|
|
|
b3Vec3 AB_x_AC = b3Cross(AB, AC);
|
|
//float32 divisor = b3Dot(AB_x_AC, AB_x_AC);
|
|
|
|
out[0] = b3Dot(QB_x_QC, AB_x_AC);
|
|
out[1] = b3Dot(QC_x_QA, AB_x_AC);
|
|
out[2] = b3Dot(QA_x_QB, AB_x_AC);
|
|
out[3] = out[0] + out[1] + out[2];
|
|
}
|
|
|
|
// Compute barycentric coordinates (u, v, w, x) for point Q to tetrahedron ABCD.
|
|
// The last output value is the (positive) divisor.
|
|
inline void b3Barycentric(float32 out[5],
|
|
const b3Vec3& A, const b3Vec3& B, const b3Vec3& C, const b3Vec3& D,
|
|
const b3Vec3& Q)
|
|
{
|
|
// RTCD, 48, 49.
|
|
b3Vec3 AB = B - A;
|
|
b3Vec3 AC = C - A;
|
|
b3Vec3 AD = D - A;
|
|
|
|
b3Vec3 QA = A - Q;
|
|
b3Vec3 QB = B - Q;
|
|
b3Vec3 QC = C - Q;
|
|
b3Vec3 QD = D - Q;
|
|
|
|
float32 divisor = b3Det(AB, AC, AD);
|
|
float32 sign = b3Sign(divisor);
|
|
|
|
out[0] = sign * b3Det(QB, QC, QD);
|
|
out[1] = sign * b3Det(QA, QD, QC);
|
|
out[2] = sign * b3Det(QA, QB, QD);
|
|
out[3] = sign * b3Det(QA, QC, QB);
|
|
out[4] = sign * divisor;
|
|
}
|
|
|
|
#endif
|