126 lines
3.3 KiB
C

/*
* Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_GEOMETRY_H
#define B3_GEOMETRY_H
#include <bounce/common/math/math.h>
#include <bounce/common/math/transform.h>
// A plane in constant normal form.
// dot(n, p) - d = 0.
struct b3Plane
{
// Does nothing for performance.
b3Plane() { }
// Set this plane from a normal and a signed distance from its origin.
b3Plane(const b3Vec3& _normal, float32 _offset)
{
normal = _normal;
offset = _offset;
}
// Set this plane from a normal and a point on the plane.
b3Plane(const b3Vec3& _normal, const b3Vec3& _point)
{
normal = _normal;
offset = b3Dot(_normal, _point);
}
// Compute this plane from three non-colinear points.
b3Plane(const b3Vec3& A, const b3Vec3& B, const b3Vec3& C)
{
b3Vec3 N = b3Cross(B - A, C - A);
normal = b3Normalize(N);
offset = b3Dot(normal, A);
}
b3Vec3 normal;
float32 offset;
};
// Transform a plane by a given frame.
inline b3Plane operator*(const b3Transform& T, const b3Plane& plane)
{
b3Vec3 normal = b3Mul(T.rotation, plane.normal);
return b3Plane(normal, plane.offset + b3Dot(normal, T.position));
}
// Transform a plane by a given frame.
inline b3Plane b3Mul(const b3Transform& T, const b3Plane& plane)
{
b3Vec3 normal = b3Mul(T.rotation, plane.normal);
return b3Plane(normal, plane.offset + b3Dot(normal, T.position));
}
// Compute the distance between a point and a plane.
inline float32 b3Distance(const b3Vec3& P, const b3Plane& plane)
{
return b3Dot(plane.normal, P) - plane.offset;
}
// Project a point onto a normal plane.
inline b3Vec3 b3ClosestPointOnPlane(const b3Vec3& P, const b3Plane& plane)
{
float32 fraction = b3Distance(P, plane);
return P - fraction * plane.normal;
}
// Convert a point Q from euclidean coordinates to barycentric coordinates (u, v)
// with respect to a segment AB.
// The last output value is the divisor.
inline void b3BarycentricCoordinates(float32 out[3],
const b3Vec3& A, const b3Vec3& B,
const b3Vec3& Q)
{
b3Vec3 AB = B - A;
b3Vec3 QA = A - Q;
b3Vec3 QB = B - Q;
float32 divisor = b3Dot(AB, AB);
out[0] = b3Dot(QB, AB);
out[1] = -b3Dot(QA, AB);
out[2] = divisor;
}
// Project a point onto a segment AB.
inline b3Vec3 b3ClosestPointOnSegment(const b3Vec3& P, const b3Vec3& A, const b3Vec3& B)
{
float32 wAB[3];
b3BarycentricCoordinates(wAB, A, B, P);
if (wAB[1] <= 0.0f)
{
return A;
}
if (wAB[0] <= 0.0f)
{
return B;
}
float32 s = 1.0f / wAB[2];
float32 wA = s * wAB[0];
float32 wB = s * wAB[1];
return wA * A + wB * B;
}
#endif