bounce/examples/testbed/tests/single_pendulum.h
2018-04-12 01:50:22 -03:00

99 lines
2.4 KiB
C++

/*
* Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef PENDULUM_H
#define PENDULUM_H
class SinglePendulum : public Test
{
public:
SinglePendulum()
{
m_g = -10.0f;
m_r = 10.0f;
m_m = 1.0f;
m_I = m_m * m_r * m_r;
// Initial state
m_theta = -0.5f * B3_PI;
m_omega = 0.0f;
}
void Step()
{
float32 h = g_testSettings->inv_hertz;
// Solution (acceleration)
float32 omega_dot = -m_g / m_r * sin(m_theta);
// Integrate acceleration
m_omega += h * omega_dot;
// Integrate velocity
m_theta += h * m_omega;
// Convert from polar coordinates (r, theta) to Cartesian coordinates (x, y)
b3Vec3 c;
c.x = m_r * sin(m_theta);
c.y = m_r * cos(m_theta);
c.z = 0.0f;
g_draw->DrawSolidSphere(c, 1.0f, b3Color_white);
b3Vec3 pole;
pole.SetZero();
g_draw->DrawSegment(pole, c, b3Color_white);
// Kinetic energy
float32 T = 0.5f * m_I * m_omega * m_omega;
// Potential energy
float32 V = -m_m * m_g * m_r * cos(m_theta);
// Lagrangian
float32 L = T - V;
//
g_draw->DrawString(b3Color_white, "T = %f \nV = %f \nL = %f", T, V, L);
}
static Test* Create()
{
return new SinglePendulum();
}
// Gravity
float32 m_g;
// Mass, inertia
float32 m_m, m_I;
// Radial coordinate
float32 m_r;
// The allowable generalized coordinate in polar coordinate frame.
// Only motions satisfying the constraints can be described
// in this frame. Therefore, all solutions satisfy the constraints.
// This is the so called reduced coordinates approach.
float32 m_theta;
// Velocity
float32 m_omega;
};
#endif