bounce/examples/testbed/tests/cloth_self_collision.h
2020-01-30 18:42:47 +00:00

242 lines
6.1 KiB
C++

/*
* Copyright (c) 2016-2019 Irlan Robson https://irlanrobson.github.io
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CLOTH_SELF_COLLISION_H
#define CLOTH_SELF_COLLISION_H
class ClothSelfCollision : public Test
{
public:
enum
{
e_w1 = 5,
e_h1 = 5,
e_w2 = 5,
e_h2 = 5
};
ClothSelfCollision()
{
b3GridClothMesh<e_w1, e_h1> mesh1;
b3Quat qX = b3QuatRotationX(0.5f * B3_PI);
for (u32 i = 0; i < mesh1.vertexCount; ++i)
{
mesh1.vertices[i] = b3Mul(qX, mesh1.vertices[i]);
mesh1.vertices[i].y += 5.0f;
}
b3GridClothMesh<e_w2, e_h2> mesh2;
b3Quat qY = b3QuatRotationY(0.5f * B3_PI);
for (u32 i = 0; i < mesh2.vertexCount; ++i)
{
mesh2.vertices[i] = b3Mul(qY * qX, mesh2.vertices[i]);
mesh2.vertices[i].y += 12.0f;
}
// Merge the meshes
m_clothMesh.vertexCount = mesh1.vertexCount + mesh2.vertexCount;
m_clothMesh.vertices = (b3Vec3*)b3Alloc(m_clothMesh.vertexCount * sizeof(b3Vec3));
u32* newVertices1 = (u32*)b3Alloc(mesh1.vertexCount * sizeof(u32));
u32 vertexIndex = 0;
for (u32 i = 0; i < mesh1.vertexCount; ++i)
{
newVertices1[i] = vertexIndex;
m_clothMesh.vertices[vertexIndex++] = mesh1.vertices[i];
}
u32* newVertices2 = (u32*)b3Alloc(mesh2.vertexCount * sizeof(u32));
for (u32 i = 0; i < mesh2.vertexCount; ++i)
{
newVertices2[i] = vertexIndex;
m_clothMesh.vertices[vertexIndex++] = mesh2.vertices[i];
}
m_clothMesh.triangleCount = mesh1.triangleCount + mesh2.triangleCount;
m_clothMesh.triangles = (b3ClothMeshTriangle*)b3Alloc(m_clothMesh.triangleCount * sizeof(b3ClothMeshTriangle));
u32 triangleIndex = 0;
for (u32 i = 0; i < mesh1.triangleCount; ++i)
{
m_clothMesh.triangles[triangleIndex].v1 = newVertices1[mesh1.triangles[i].v1];
m_clothMesh.triangles[triangleIndex].v2 = newVertices1[mesh1.triangles[i].v2];
m_clothMesh.triangles[triangleIndex].v3 = newVertices1[mesh1.triangles[i].v3];
++triangleIndex;
}
for (u32 i = 0; i < mesh2.triangleCount; ++i)
{
m_clothMesh.triangles[triangleIndex].v1 = newVertices2[mesh2.triangles[i].v1];
m_clothMesh.triangles[triangleIndex].v2 = newVertices2[mesh2.triangles[i].v2];
m_clothMesh.triangles[triangleIndex].v3 = newVertices2[mesh2.triangles[i].v3];
++triangleIndex;
}
m_clothMesh.meshCount = 1;
m_clothMesh.meshes = (b3ClothMeshMesh*)b3Alloc(sizeof(b3ClothMeshMesh));
m_clothMesh.meshes->startTriangle = 0;
m_clothMesh.meshes->triangleCount = m_clothMesh.triangleCount;
m_clothMesh.meshes->startVertex = 0;
m_clothMesh.meshes->vertexCount = m_clothMesh.vertexCount;
m_clothMesh.shearingLineCount = 0;
m_clothMesh.bendingLineCount = 0;
m_clothMesh.sewingLineCount = 0;
// Create the cloth
b3ClothDef def;
def.mesh = &m_clothMesh;
def.density = 1.0f;
def.streching = 100000.0f;
def.thickness = 0.2f;
def.friction = 0.3f;
m_cloth = new b3Cloth(def);
m_cloth->SetGravity(b3Vec3(0.0f, -9.8f, 0.0f));
m_cloth->EnableSelfCollision(true);
for (u32 i = 0; i < mesh1.vertexCount; ++i)
{
u32 newVertex = newVertices1[i];
m_cloth->GetParticle(newVertex)->SetType(e_staticClothParticle);
}
b3Free(newVertices1);
b3Free(newVertices2);
{
b3BodyDef bd;
b3Body* b = m_world.CreateBody(bd);
b3HullShape hullShape;
hullShape.m_hull = &m_groundHull;
hullShape.m_radius = 0.0f;;
b3ShapeDef sd;
sd.shape = &hullShape;
sd.friction = 1.0f;
b3Shape* s = b->CreateShape(sd);
b3ClothWorldShapeDef csd;
csd.shape = s;
m_cloth->CreateWorldShape(csd);
}
m_clothDragger = new b3ClothDragger(&m_ray, m_cloth);
}
~ClothSelfCollision()
{
b3Free(m_clothMesh.vertices);
b3Free(m_clothMesh.triangles);
b3Free(m_clothMesh.meshes);
delete m_cloth;
delete m_clothDragger;
}
void Step()
{
Test::Step();
m_cloth->Step(g_testSettings->inv_hertz, g_testSettings->velocityIterations, g_testSettings->positionIterations);
m_cloth->Draw();
if (m_clothDragger->IsDragging())
{
b3Vec3 pA = m_clothDragger->GetPointA();
b3Vec3 pB = m_clothDragger->GetPointB();
g_draw->DrawPoint(pA, 4.0f, b3Color_green);
g_draw->DrawPoint(pB, 4.0f, b3Color_green);
g_draw->DrawSegment(pA, pB, b3Color_white);
}
g_draw->DrawString(b3Color_white, "S - Turn on/off self collision");
if (m_cloth->IsSelfCollisionEnabled())
{
g_draw->DrawString(b3Color_white, "Self collision enabled");
}
else
{
g_draw->DrawString(b3Color_white, "Self collision disabled");
}
extern u32 b3_clothSolverIterations;
g_draw->DrawString(b3Color_white, "Iterations = %d", b3_clothSolverIterations);
scalar E = m_cloth->GetEnergy();
g_draw->DrawString(b3Color_white, "E = %f", E);
}
void MouseMove(const b3Ray3& pw)
{
Test::MouseMove(pw);
if (m_clothDragger->IsDragging() == true)
{
m_clothDragger->Drag();
}
}
void MouseLeftDown(const b3Ray3& pw)
{
Test::MouseLeftDown(pw);
if (m_clothDragger->IsDragging() == false)
{
m_clothDragger->StartDragging();
}
}
void MouseLeftUp(const b3Ray3& pw)
{
Test::MouseLeftUp(pw);
if (m_clothDragger->IsDragging() == true)
{
m_clothDragger->StopDragging();
}
}
void KeyDown(int key)
{
if (key == GLFW_KEY_S)
{
m_cloth->EnableSelfCollision(!m_cloth->IsSelfCollisionEnabled());
}
}
static Test* Create()
{
return new ClothSelfCollision();
}
b3ClothMesh m_clothMesh;
b3Cloth* m_cloth;
b3ClothDragger* m_clothDragger;
};
#endif