bounce/examples/testbed/tests/tension_mapping.h
2020-01-30 18:42:47 +00:00

276 lines
5.9 KiB
C++

/*
* Copyright (c) 2016-2019 Irlan Robson https://irlanrobson.github.io
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef TENSION_MAPPING_H
#define TENSION_MAPPING_H
// Hot/Cold color map
// See http://paulbourke.net/miscellaneous/colourspace/
static inline b3Color Color(scalar x, scalar a, scalar b)
{
x = b3Clamp(x, a, b);
scalar d = b - a;
b3Color c(1.0f, 1.0f, 1.0f);
if (x < a + 0.25f * d)
{
c.r = 0.0f;
c.g = 4.0f * (x - a) / d;
return c;
}
if (x < a + 0.5f * d)
{
c.r = 0.0f;
c.b = 1.0f + 4.0f * (a + 0.25f * d - x) / d;
return c;
}
if (x < a + 0.75f * d)
{
c.r = 4.0f * (x - a - 0.5f * d) / d;
c.b = 0.0f;
return c;
}
c.g = 1.0f + 4.0f * (a + 0.75f * d - x) / d;
c.b = 0.0f;
return c;
}
class TensionMapping : public Test
{
public:
enum
{
e_w = 10,
e_h = 10
};
TensionMapping()
{
// Create cloth
b3ClothDef def;
def.mesh = &m_clothMesh;
def.density = 0.2f;
def.streching = 10000.0f;
def.strechDamping = 100.0f;
def.shearing = 1000.0f;
def.shearDamping = 10.0f;
def.bending = 1000.0f;
def.bendDamping = 10.0f;
m_cloth = new b3Cloth(def);
m_cloth->SetGravity(b3Vec3(0.0f, -9.8f, 0.0f));
// Freeze some particles
for (u32 i = 0; i < 2; ++i)
{
for (u32 j = 0; j < e_w + 1; ++j)
{
u32 v = m_clothMesh.GetVertex(i, j);
b3ClothParticle* p = m_cloth->GetParticle(v);
p->SetType(e_staticClothParticle);
}
}
m_clothDragger = new b3ClothDragger(&m_ray, m_cloth);
}
~TensionMapping()
{
delete m_clothDragger;
delete m_cloth;
}
void Step()
{
Test::Step();
m_cloth->Step(g_testSettings->inv_hertz, g_testSettings->velocityIterations, g_testSettings->positionIterations);
const b3ClothMesh* mesh = m_cloth->GetMesh();
b3Vec3 tension[(e_h + 1) * (e_w + 1)];
for (u32 i = 0; i < mesh->vertexCount; ++i)
{
tension[i].SetZero();
}
for (b3Force* f = m_cloth->GetForceList().m_head; f; f = f->GetNext())
{
if (f->GetType() == e_stretchForce)
{
b3StretchForce* s = (b3StretchForce*)f;
b3Vec3 f1 = s->GetActionForce1();
b3Vec3 f2 = s->GetActionForce2();
b3Vec3 f3 = s->GetActionForce3();
b3ClothParticle* p1 = s->GetParticle1();
b3ClothParticle* p2 = s->GetParticle2();
b3ClothParticle* p3 = s->GetParticle3();
u32 v1 = p1->GetMeshIndex();
u32 v2 = p2->GetMeshIndex();
u32 v3 = p3->GetMeshIndex();
tension[v1] += f1;
tension[v2] += f2;
tension[v3] += f3;
}
}
for (b3ClothParticle* p = m_cloth->GetParticleList().m_head; p; p = p->GetNext())
{
if (p->GetType() == e_staticClothParticle)
{
b3Draw_draw->DrawPoint(p->GetPosition(), 4.0f, b3Color_white);
}
if (p->GetType() == e_kinematicClothParticle)
{
b3Draw_draw->DrawPoint(p->GetPosition(), 4.0f, b3Color_blue);
}
if (p->GetType() == e_dynamicClothParticle)
{
b3Draw_draw->DrawPoint(p->GetPosition(), 4.0f, b3Color_green);
}
}
for (u32 i = 0; i < mesh->triangleCount; ++i)
{
b3ClothMeshTriangle* triangle = mesh->triangles + i;
b3Vec3 v1 = m_cloth->GetParticle(triangle->v1)->GetPosition();
b3Vec3 v2 = m_cloth->GetParticle(triangle->v2)->GetPosition();
b3Vec3 v3 = m_cloth->GetParticle(triangle->v3)->GetPosition();
g_draw->DrawTriangle(v1, v2, v3, b3Color_black);
b3Vec3 c = (v1 + v2 + v3) / 3.0f;
scalar s = 0.9f;
v1 = s * (v1 - c) + c;
v2 = s * (v2 - c) + c;
v3 = s * (v3 - c) + c;
b3Vec3 f1 = tension[triangle->v1];
scalar L1 = b3Length(f1);
b3Vec3 f2 = tension[triangle->v2];
scalar L2 = b3Length(f2);
b3Vec3 f3 = tension[triangle->v3];
scalar L3 = b3Length(f3);
scalar L = (L1 + L2 + L3) / 3.0f;
const scalar kMaxT = 10000.0f;
b3Color color = Color(L, 0.0f, kMaxT);
b3Vec3 n1 = b3Cross(v2 - v1, v3 - v1);
n1.Normalize();
scalar r = 0.05f;
{
b3Vec3 x1 = v1 + r * n1;
b3Vec3 x2 = v2 + r * n1;
b3Vec3 x3 = v3 + r * n1;
g_draw->DrawSolidTriangle(n1, x1, x2, x3, color);
}
{
b3Vec3 n2 = -n1;
b3Vec3 x1 = v1 + r * n2;
b3Vec3 x2 = v2 + r * n2;
b3Vec3 x3 = v3 + r * n2;
g_draw->DrawSolidTriangle(n2, x3, x2, x1, color);
}
}
if (m_clothDragger->IsDragging())
{
b3Vec3 pA = m_clothDragger->GetPointA();
b3Vec3 pB = m_clothDragger->GetPointB();
g_draw->DrawPoint(pA, 4.0f, b3Color_green);
g_draw->DrawPoint(pB, 4.0f, b3Color_green);
g_draw->DrawSegment(pA, pB, b3Color_white);
}
extern u32 b3_clothSolverIterations;
g_draw->DrawString(b3Color_white, "Iterations = %d", b3_clothSolverIterations);
scalar E = m_cloth->GetEnergy();
g_draw->DrawString(b3Color_white, "E = %f", E);
}
void MouseMove(const b3Ray3& pw)
{
Test::MouseMove(pw);
if (m_clothDragger->IsDragging() == true)
{
m_clothDragger->Drag();
}
}
void MouseLeftDown(const b3Ray3& pw)
{
Test::MouseLeftDown(pw);
if (m_clothDragger->IsDragging() == false)
{
m_clothDragger->StartDragging();
}
}
void MouseLeftUp(const b3Ray3& pw)
{
Test::MouseLeftUp(pw);
if (m_clothDragger->IsDragging() == true)
{
m_clothDragger->StopDragging();
}
}
static Test* Create()
{
return new TensionMapping();
}
b3GridClothMesh<e_w, e_h> m_clothMesh;
b3Cloth* m_cloth;
b3ClothDragger* m_clothDragger;
};
#endif