Files
bounce/include/bounce/collision/trees/static_tree.h
Luke Benstead e5897d433d Upgrade bounce
2020-01-30 18:42:47 +00:00

301 lines
6.5 KiB
C++

/*
* Copyright (c) 2016-2019 Irlan Robson https://irlanrobson.github.io
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_STATIC_TREE_H
#define B3_STATIC_TREE_H
#include <bounce/common/template/stack.h>
#include <bounce/collision/shapes/aabb.h>
#include <bounce/collision/collision.h>
#define B3_NULL_NODE_S (0xFFFFFFFF)
// AABB tree for static AABBs.
class b3StaticTree
{
public:
b3StaticTree();
~b3StaticTree();
// Build this tree from a list of AABBs.
void Build(const b3AABB* aabbs, u32 count);
// Get the AABB of a given proxy.
const b3AABB& GetAABB(u32 proxyId) const;
// Get the user data associated with a given proxy.
u32 GetUserData(u32 proxyId) const;
// Report the client callback all AABBs that are overlapping with
// the given AABB. The client callback must return true if the query
// must be stopped or false to continue looking for more overlapping pairs.
template<class T>
void QueryAABB(T* callback, const b3AABB& aabb) const;
// Report the client callback all AABBs that are overlapping with
// the given ray. The client callback must return the new intersection fraction
// (real). If the fraction == 0 then the query is cancelled immediatly.
template<class T>
void RayCast(T* callback, const b3RayCastInput& input) const;
// Draw this tree.
void Draw() const;
// Get the size in bytes of this tree.
u32 GetSize() const;
private :
// A node in a static tree.
struct b3Node
{
b3AABB aabb;
u32 child1;
union
{
u32 child2;
u32 index;
};
// Is this node a leaf?
bool IsLeaf() const
{
return child1 == B3_NULL_NODE_S;
}
};
// Build this tree recursively.
void RecurseBuild(const b3AABB* set, b3Node* node, u32* indices, u32 count, u32 minObjectsPerLeaf, u32 nodeCapacity, u32& leafCount, u32& internalCount);
// The root of this tree.
u32 m_root;
// The nodes of this tree stored in an array.
u32 m_nodeCount;
b3Node* m_nodes;
};
inline const b3AABB& b3StaticTree::GetAABB(u32 proxyId) const
{
B3_ASSERT(proxyId < m_nodeCount);
return m_nodes[proxyId].aabb;
}
inline u32 b3StaticTree::GetUserData(u32 proxyId) const
{
B3_ASSERT(proxyId < m_nodeCount);
B3_ASSERT(m_nodes[proxyId].IsLeaf());
return m_nodes[proxyId].index;
}
template<class T>
inline void b3StaticTree::QueryAABB(T* callback, const b3AABB& aabb) const
{
if (m_nodeCount == 0)
{
return;
}
b3Stack<u32, 256> stack;
stack.Push(m_root);
while (stack.IsEmpty() == false)
{
u32 nodeIndex = stack.Top();
if (nodeIndex == B3_NULL_NODE_S)
{
continue;
}
stack.Pop();
const b3Node* node = m_nodes + nodeIndex;
if (b3TestOverlap(node->aabb, aabb) == true)
{
if (node->IsLeaf() == true)
{
if (callback->Report(nodeIndex) == false)
{
return;
}
}
else
{
stack.Push(node->child1);
stack.Push(node->child2);
}
}
}
}
template<class T>
inline void b3StaticTree::RayCast(T* callback, const b3RayCastInput& input) const
{
if (m_nodeCount == 0)
{
return;
}
b3Vec3 p1 = input.p1;
b3Vec3 p2 = input.p2;
b3Vec3 r = p2 - p1;
B3_ASSERT(b3LengthSquared(r) > scalar(0));
r.Normalize();
scalar maxFraction = input.maxFraction;
// Build an AABB for the segment.
b3Vec3 q2;
b3AABB segmentAABB;
{
q2 = p1 + maxFraction * (p2 - p1);
segmentAABB.lowerBound = b3Min(p1, q2);
segmentAABB.upperBound = b3Max(p1, q2);
}
b3Vec3 e1 = b3Vec3_x;
b3Vec3 e2 = b3Vec3_y;
b3Vec3 e3 = b3Vec3_z;
b3Stack<u32, 256> stack;
stack.Push(m_root);
while (stack.IsEmpty() == false)
{
u32 nodeIndex = stack.Top();
stack.Pop();
if (nodeIndex == B3_NULL_NODE_S)
{
continue;
}
const b3Node* node = m_nodes + nodeIndex;
if (b3TestOverlap(segmentAABB, node->aabb) == false)
{
continue;
}
// Separating axis for segment (Gino, p80).
b3Vec3 c = node->aabb.GetCenter();
b3Vec3 h = node->aabb.GetExtents();
b3Vec3 s = p1 - c;
b3Vec3 t = q2 - c;
// |sigma + tau| > |sigma - tau| + 2 * eta
scalar sigma_1 = s.x;
scalar tau_1 = t.x;
scalar eta_1 = h.x;
scalar s1 = b3Abs(sigma_1 + tau_1) - (b3Abs(sigma_1 - tau_1) + scalar(2) * eta_1);
if (s1 > scalar(0))
{
continue;
}
scalar sigma_2 = s.y;
scalar tau_2 = t.y;
scalar eta_2 = h.y;
scalar s2 = b3Abs(sigma_2 + tau_2) - (b3Abs(sigma_2 - tau_2) + scalar(2) * eta_2);
if (s2 > scalar(0))
{
continue;
}
scalar sigma_3 = s.z;
scalar tau_3 = t.z;
scalar eta_3 = h.z;
scalar s3 = b3Abs(sigma_3 + tau_3) - (b3Abs(sigma_3 - tau_3) + scalar(2) * eta_3);
if (s3 > scalar(0))
{
continue;
}
// v = cross(ei, r)
// |dot(v, s)| > dot(|v|, h)
b3Vec3 v1 = b3Cross(e1, r);
b3Vec3 abs_v1 = b3Abs(v1);
scalar s4 = b3Abs(b3Dot(v1, s)) - b3Dot(abs_v1, h);
if (s4 > scalar(0))
{
continue;
}
b3Vec3 v2 = b3Cross(e2, r);
b3Vec3 abs_v2 = b3Abs(v2);
scalar s5 = b3Abs(b3Dot(v2, s)) - b3Dot(abs_v2, h);
if (s5 > scalar(0))
{
continue;
}
b3Vec3 v3 = b3Cross(e3, r);
b3Vec3 abs_v3 = b3Abs(v3);
scalar s6 = b3Abs(b3Dot(v3, s)) - b3Dot(abs_v3, h);
if (s6 > scalar(0))
{
continue;
}
if (node->IsLeaf() == true)
{
b3RayCastInput subInput;
subInput.p1 = input.p1;
subInput.p2 = input.p2;
subInput.maxFraction = maxFraction;
scalar newMaxFraction = callback->Report(subInput, nodeIndex);
if (newMaxFraction == scalar(0))
{
// The client has stopped the query.
return;
}
if (newMaxFraction > scalar(0))
{
// Update the segment AABB.
maxFraction = newMaxFraction;
q2 = p1 + maxFraction * (p2 - p1);
segmentAABB.lowerBound = b3Min(p1, q2);
segmentAABB.upperBound = b3Max(p1, q2);
}
}
else
{
stack.Push(node->child1);
stack.Push(node->child2);
}
}
}
inline u32 b3StaticTree::GetSize() const
{
u32 size = 0;
size += sizeof(b3StaticTree);
size += m_nodeCount * sizeof(b3Node);
return size;
}
#endif