241 lines
5.9 KiB
C++

/*
* Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_DYNAMIC_TREE_H
#define B3_DYNAMIC_TREE_H
#include <bounce/common/template/stack.h>
#include <bounce/collision/shapes/aabb3.h>
#include <bounce/collision/collision.h>
#define B3_NULL_NODE_D (0xFFFFFFFF)
// AABB tree for dynamic AABBs.
class b3DynamicTree
{
public :
b3DynamicTree();
~b3DynamicTree();
// Insert a node into the tree and return its ID.
u32 InsertNode(const b3AABB3& aabb, void* userData);
// Remove a node from the tree.
void RemoveNode(u32 proxyId);
// Update a node AABB.
void UpdateNode(u32 proxyId, const b3AABB3& aabb);
// Get the (fat) AABB of a given proxy.
const b3AABB3& GetAABB(u32 proxyId) const;
// Get the data associated with a given proxy.
void* GetUserData(u32 proxyId) const;
// Check if two aabbs in this tree are overlapping.
bool TestOverlap(u32 proxy1, u32 proxy2) const;
// Keep reporting the client callback the AABBs that are overlapping with
// the given AABB. The client callback must return true if the query
// must be stopped or false to continue looking for more overlapping pairs.
template<class T>
void QueryAABB(T* callback, const b3AABB3& aabb) const;
// Keep reporting the client callback all AABBs that are overlapping with
// the given ray. The client callback must return the new intersection fraction.
// If the fraction == 0 then the query is cancelled immediately.
template<class T>
void RayCast(T* callback, const b3RayCastInput& input) const;
// Validate a given node of this tree.
void Validate(u32 node) const;
// Draw this tree.
void Draw() const;
private :
struct b3Node
{
// Is this node a leaf?
bool IsLeaf() const
{
//A node is a leaf if child 2 == B3_NULL_NODE_D or height == 0.
return child1 == B3_NULL_NODE_D;
}
// The fattened node AABB.
b3AABB3 aabb;
// The associated user data.
void* userData;
union
{
u32 parent;
u32 next;
};
u32 child1;
u32 child2;
// Flag
// leaf if 0, free node if -1
i32 height;
};
// Insert a node into the tree.
void InsertLeaf(u32 node);
// Remove a node from the tree.
void RemoveLeaf(u32 node);
// Rebuild the hierarchy starting from the given node.
void WalkBackNodeAndCombineVolumes(u32 node);
// Find the best node that can be merged with a given AABB.
u32 FindBest(const b3AABB3& aabb) const;
// Peel a node from the free list and insert into the node array.
// Allocate a new node if necessary. The function returns the new node index.
u32 AllocateNode();
// Free a node from the node pool and add it to the free list.
void FreeNode(u32 node);
// Make a node available for the next allocation.
void AddToFreeList(u32 node);
// The root of this tree.
u32 m_root;
// The nodes of this tree stored in an array.
b3Node* m_nodes;
u32 m_nodeCount;
u32 m_nodeCapacity;
u32 m_freeList;
};
inline const b3AABB3& b3DynamicTree::GetAABB(u32 proxyId) const
{
B3_ASSERT(proxyId != B3_NULL_NODE_D && proxyId < m_nodeCapacity);
return m_nodes[proxyId].aabb;
}
inline void* b3DynamicTree::GetUserData(u32 proxyId) const
{
B3_ASSERT(proxyId != B3_NULL_NODE_D && proxyId < m_nodeCapacity);
return m_nodes[proxyId].userData;
}
inline bool b3DynamicTree::TestOverlap(u32 proxy1, u32 proxy2) const
{
B3_ASSERT(proxy1 != B3_NULL_NODE_D && proxy1 < m_nodeCapacity);
B3_ASSERT(proxy2 != B3_NULL_NODE_D && proxy2 < m_nodeCapacity);
return b3TestOverlap(m_nodes[proxy1].aabb, m_nodes[proxy2].aabb);
}
template<class T>
inline void b3DynamicTree::QueryAABB(T* callback, const b3AABB3& aabb) const
{
b3Stack<u32, 256> stack;
stack.Push(m_root);
while (stack.IsEmpty() == false)
{
u32 nodeIndex = stack.Top();
stack.Pop();
if (nodeIndex == B3_NULL_NODE_D)
{
continue;
}
const b3Node* node = m_nodes + nodeIndex;
if (b3TestOverlap(node->aabb, aabb) == true)
{
if (node->IsLeaf() == true)
{
if (callback->Report(nodeIndex) == false)
{
return;
}
}
else
{
stack.Push(node->child1);
stack.Push(node->child2);
}
}
}
}
template<class T>
inline void b3DynamicTree::RayCast(T* callback, const b3RayCastInput& input) const
{
b3Vec3 p1 = input.p1;
b3Vec3 p2 = input.p2;
b3Vec3 d = p2 - p1;
float32 maxFraction = input.maxFraction;
// Ensure non-degenerate segment.
B3_ASSERT(b3Dot(d, d) > B3_EPSILON * B3_EPSILON);
b3Stack<u32, 256> stack;
stack.Push(m_root);
while (stack.IsEmpty() == false)
{
u32 nodeIndex = stack.Top();
stack.Pop();
if (nodeIndex == B3_NULL_NODE_D)
{
continue;
}
const b3Node* node = m_nodes + nodeIndex;
float32 minFraction = 0.0f;
if (node->aabb.TestRay(p1, p2, maxFraction, minFraction) == true)
{
if (node->IsLeaf() == true)
{
b3RayCastInput subInput;
subInput.p1 = input.p1;
subInput.p2 = input.p2;
subInput.maxFraction = maxFraction;
float32 newFraction = callback->Report(subInput, nodeIndex);
if (newFraction == 0.0f)
{
// The client has stopped the query.
return;
}
}
else
{
stack.Push(node->child1);
stack.Push(node->child2);
}
}
}
}
#endif