2018-10-08 16:18:28 -03:00

340 lines
6.6 KiB
C

/*
* Copyright (c) 2016-2016 Irlan Robson http://www.irlan.net
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_SPATIAL_H
#define B3_SPATIAL_H
#include <bounce/common/math/mat33.h>
// A 6-by-1 motion vector.
struct b3MotionVec
{
b3MotionVec() { }
b3MotionVec(const b3Vec3& _w, const b3Vec3& _v)
{
w = _w;
v = _v;
}
void SetZero()
{
w.SetZero();
v.SetZero();
}
void operator+=(const b3MotionVec& b)
{
w += b.w;
v += b.v;
}
void operator-=(const b3MotionVec& b)
{
w -= b.w;
v -= b.v;
}
b3Vec3 w, v;
};
// a + b
inline b3MotionVec operator+(const b3MotionVec& a, const b3MotionVec& b)
{
return b3MotionVec(a.w + b.w, a.v + b.v);
}
// a - b
inline b3MotionVec operator-(const b3MotionVec& a, const b3MotionVec& b)
{
return b3MotionVec(a.w - b.w, a.v - b.v);
}
// -a
inline b3MotionVec operator-(const b3MotionVec& a)
{
return b3MotionVec(-a.w, -a.v);
}
// a * s
inline b3MotionVec operator*(const b3MotionVec& a, float32 s)
{
return b3MotionVec(s * a.w, s * a.v);
}
// s * a
inline b3MotionVec operator*(float32 s, const b3MotionVec& a)
{
return b3MotionVec(s * a.w, s * a.v);
}
// a / s
inline b3MotionVec operator/(const b3MotionVec& a, float32 s)
{
return b3MotionVec(a.w / s, a.v / s);
}
// a x b
// [wx 0][w2] = [wx * w2 + 0 * v2] = [wx * w2]
// [vx wx][v2] [vx * w2 + wx * v2] [vx * w2 + wx * v2]
inline b3MotionVec b3Cross(const b3MotionVec& a, const b3MotionVec& b)
{
b3MotionVec result;
result.w = b3Cross(a.w, b.w);
result.v = b3Cross(a.v, b.w) + b3Cross(a.w, b.v);
return result;
}
// A 6-by-1 force vector.
struct b3ForceVec
{
b3ForceVec() { }
b3ForceVec(const b3Vec3& _n, const b3Vec3& _f)
{
n = _n;
f = _f;
}
void SetZero()
{
n.SetZero();
f.SetZero();
}
void operator-=(const b3ForceVec& v)
{
n -= v.n;
f -= v.f;
}
void operator+=(const b3ForceVec& v)
{
n += v.n;
f += v.f;
}
b3Vec3 n, f;
};
// a + b
inline b3ForceVec operator+(const b3ForceVec& a, const b3ForceVec& b)
{
return b3ForceVec(a.n + b.n, a.f + b.f);
}
// a - b
inline b3ForceVec operator-(const b3ForceVec& a, const b3ForceVec& b)
{
return b3ForceVec(a.n - b.n, a.f - b.f);
}
// -a
inline b3ForceVec operator-(const b3ForceVec& a)
{
return b3ForceVec(-a.n, -a.f);
}
// a * s
inline b3ForceVec operator*(const b3ForceVec& a, float32 s)
{
return b3ForceVec(s * a.n, s * a.f);
}
// s * a
inline b3ForceVec operator*(float32 s, const b3ForceVec& a)
{
return b3ForceVec(s * a.n, s * a.f);
}
// a / s
inline b3ForceVec operator/(const b3ForceVec& a, float32 s)
{
return b3ForceVec(a.n / s, a.f / s);
}
// a^T = [a.b^T, a.a^T]
// a^T * b = a.b * b.a + a.a * b.b
inline float32 b3Dot(const b3MotionVec& a, const b3ForceVec& b)
{
return b3Dot(a.v, b.n) + b3Dot(a.w, b.f);
}
// A 6-by-6 spatial inertia matrix stored as a block matrix.
// A, B, C, D are the 3-by-3 matrices. D is not stored
// because it's defined as D = A^T.
struct b3SpInertia
{
b3SpInertia() { }
void SetZero()
{
A.SetZero();
B.SetZero();
C.SetZero();
}
// Set this matrix from mass and rotational inertia
// about the local center of mass (zero vector).
void SetLocalInertia(float32 m, const b3Mat33& I)
{
A.SetZero();
B = b3Diagonal(m);
C = I;
}
void operator-=(const b3SpInertia& M)
{
A -= M.A;
B -= M.B;
C -= M.C;
}
void operator+=(const b3SpInertia& M)
{
A += M.A;
B += M.B;
C += M.C;
}
// Solve Ax = b.
b3MotionVec Solve(const b3ForceVec& b) const;
b3Mat33 A, B, C;
};
inline b3MotionVec b3SpInertia::Solve(const b3ForceVec& b) const
{
// Numerical Recipes, p. 77
// Block matrix inversion:
// https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_inversion
b3Mat33 invA_A, invA_B, invA_C, invA_D;
b3Mat33 D = b3Transpose(A);
b3Mat33 NinvB = -b3Inverse(B);
invA_B = b3Inverse(D * NinvB * A + C);
invA_A = invA_B * D * NinvB;
invA_D = b3Transpose(invA_A);
b3Mat33 T = A * invA_A;
T[0][0] -= 1.0f;
T[1][1] -= 1.0f;
T[2][2] -= 1.0f;
invA_C = NinvB * T;
b3MotionVec x;
x.w = invA_A * b.n + invA_B * b.f;
x.v = invA_C * b.n + invA_D * b.f;
return x;
}
// M * v
inline b3ForceVec operator*(const b3SpInertia& M, const b3MotionVec& v)
{
b3ForceVec result;
result.n = M.A * v.w + M.B * v.v;
result.f = M.C * v.w + b3MulT(M.A, v.v);
return result;
}
// a * b^T
inline b3SpInertia b3Outer(const b3ForceVec& a, const b3ForceVec& b)
{
b3SpInertia result;
result.A = b3Outer(a.n, b.f);
result.B = b3Outer(a.n, b.n);
result.C = b3Outer(a.f, b.f);
return result;
}
// A spatial transformation matrix. This is a
// 6-by-6 matrix, but we represent it efficiently
// with a rotation matrix and a translation vector.
struct b3SpTransform
{
b3SpTransform() { }
b3SpTransform(const b3Mat33& _E, const b3Vec3& _r)
{
E = _E;
r = _r;
}
void SetIdentity()
{
E.SetIdentity();
r.SetZero();
}
b3Mat33 E;
b3Vec3 r;
};
// X * v
inline b3MotionVec b3Mul(const b3SpTransform& X, const b3MotionVec& v)
{
b3MotionVec result;
result.w = X.E * v.w;
result.v = -b3Cross(X.r, X.E * v.w) + X.E * v.v;
return result;
}
// X^-1 * v
inline b3MotionVec b3MulT(const b3SpTransform& X, const b3MotionVec& v)
{
b3MotionVec result;
result.w = b3MulT(X.E, v.w);
result.v = b3MulT(X.E, v.v + b3Cross(X.r, v.w));
return result;
}
// X * v
inline b3ForceVec b3Mul(const b3SpTransform& X, const b3ForceVec& v)
{
b3ForceVec result;
result.n = X.E * v.n;
result.f = -b3Cross(X.r, X.E * v.n) + X.E * v.f;
return result;
}
// X^-1 * v
inline b3ForceVec b3MulT(const b3SpTransform& X, const b3ForceVec& v)
{
b3ForceVec result;
result.n = b3MulT(X.E, v.n);
result.f = b3MulT(X.E, v.f + b3Cross(X.r, v.n));
return result;
}
// X^-1 * I
inline b3SpInertia b3MulT(const b3SpTransform& X, const b3SpInertia& I)
{
b3Mat33 E = X.E;
b3Mat33 ET = b3Transpose(X.E);
b3Mat33 rx = b3Skew(X.r);
b3SpInertia result;
result.A = ET * (I.A - I.B * rx) * E;
result.B = ET * I.B * E;
result.C = ET * (rx * (I.A - I.B * rx) + I.C - b3Transpose(I.A) * rx) * E;
return result;
}
#endif