Rather ugly split of some code into a separate function, to keep the main loop as small and simple as possible. To be tidied up shortly.

This commit is contained in:
David Williams 2015-05-25 17:37:30 +02:00
parent e0ce93acb1
commit 13be35aac9
2 changed files with 197 additions and 197 deletions

View File

@ -159,7 +159,7 @@ namespace PolyVox
private:
//Compute the cell bitmask for a particular slice in z.
void computeBitmaskForSlice();
void generateMeshForCell(uint32_t uXRegSpace, uint32_t uYRegSpace, uint32_t uZRegSpace, typename VolumeType::Sampler& sampler, typename VolumeType::VoxelType v111, uint8_t iCubeIndex, Array3DInt32& pIndicesX, Array3DInt32& pIndicesY, Array3DInt32& pIndicesZ, int32_t iXVolSpace, int32_t iYVolSpace, int32_t iZVolSpace);
////////////////////////////////////////////////////////////////////////////////
// NOTE: These two functions are in the .h file rather than the .inl due to an apparent bug in VC2010.

View File

@ -42,18 +42,6 @@ namespace PolyVox
Timer timer;
m_meshCurrent->clear();
computeBitmaskForSlice();
m_meshCurrent->setOffset(m_regSizeInVoxels.getLowerCorner());
POLYVOX_LOG_TRACE("Marching cubes surface extraction took ", timer.elapsedTimeInMilliSeconds(),
"ms (Region size = ", m_regSizeInVoxels.getWidthInVoxels(), "x", m_regSizeInVoxels.getHeightInVoxels(),
"x", m_regSizeInVoxels.getDepthInVoxels(), ")");
}
template<typename VolumeType, typename MeshType, typename ControllerType>
void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::computeBitmaskForSlice()
{
const uint32_t uArrayWidth = m_regSizeInVoxels.getUpperX() - m_regSizeInVoxels.getLowerX() + 2;
const uint32_t uArrayHeight = m_regSizeInVoxels.getUpperY() - m_regSizeInVoxels.getLowerY() + 2;
const uint32_t uArrayDepth = m_regSizeInVoxels.getUpperZ() - m_regSizeInVoxels.getLowerZ() + 2;
@ -130,196 +118,208 @@ namespace PolyVox
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] != 0)
{
generateMeshForCell(uXRegSpace, uYRegSpace, uZRegSpace, sampler, v111, iCubeIndex, pIndicesX, pIndicesY, pIndicesZ, iXVolSpace, iYVolSpace, iZVolSpace);
}
// These three might not have been sampled, as v111 is the only one we sample every iteration.
typename VolumeType::VoxelType v110 = sampler.peekVoxel0px0py1nz();
typename VolumeType::VoxelType v101 = sampler.peekVoxel0px1ny0pz();
typename VolumeType::VoxelType v011 = sampler.peekVoxel1nx0py0pz();
const Vector3DFloat n000 = computeCentralDifferenceGradient(sampler);
/* Find the vertices where the surface intersects the cube */
if ((edgeTable[iCubeIndex] & 64) && (uXRegSpace > 0))
{
sampler.moveNegativeX();
POLYVOX_ASSERT(v011 != v111, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n100 = computeCentralDifferenceGradient(sampler);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v011)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v011));
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace - 1) + fInterp, static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace));
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v011, v111, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
sampler.movePositiveX();
}
if ((edgeTable[iCubeIndex] & 32) && (uYRegSpace > 0))
{
sampler.moveNegativeY();
POLYVOX_ASSERT(v101 != v111, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n010 = computeCentralDifferenceGradient(sampler);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v101)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v101));
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace - 1) + fInterp, static_cast<float>(uZRegSpace));
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v101, v111, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
sampler.movePositiveY();
}
if ((edgeTable[iCubeIndex] & 1024) && (uZRegSpace > 0))
{
sampler.moveNegativeZ();
POLYVOX_ASSERT(v110 != v111, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n001 = computeCentralDifferenceGradient(sampler);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v110)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v110));
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace - 1) + fInterp);
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v110, v111, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesZ(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
sampler.movePositiveZ();
}
// Now output the indices. For the first row, column or slice there aren't
// any (the region size in cells is one less than the region size in voxels)
if ((uXRegSpace != 0) && (uYRegSpace != 0) && (uZRegSpace != 0))
{
int32_t indlist[12];
sampler.setPosition(iXVolSpace, iYVolSpace, iZVolSpace);
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] != 0)
{
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
indlist[0] = pIndicesX(uXRegSpace, uYRegSpace - 1, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 2)
{
indlist[1] = pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 4)
{
indlist[2] = pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 8)
{
indlist[3] = pIndicesY(uXRegSpace - 1, uYRegSpace, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 16)
{
indlist[4] = pIndicesX(uXRegSpace, uYRegSpace - 1, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 32)
{
indlist[5] = pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 64)
{
indlist[6] = pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 128)
{
indlist[7] = pIndicesY(uXRegSpace - 1, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 256)
{
indlist[8] = pIndicesZ(uXRegSpace - 1, uYRegSpace - 1, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 512)
{
indlist[9] = pIndicesZ(uXRegSpace, uYRegSpace - 1, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 1024)
{
indlist[10] = pIndicesZ(uXRegSpace, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 2048)
{
indlist[11] = pIndicesZ(uXRegSpace - 1, uYRegSpace, uZRegSpace);
}
for (int i = 0; triTable[iCubeIndex][i] != -1; i += 3)
{
const int32_t ind0 = indlist[triTable[iCubeIndex][i]];
const int32_t ind1 = indlist[triTable[iCubeIndex][i + 1]];
const int32_t ind2 = indlist[triTable[iCubeIndex][i + 2]];
if ((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
{
m_meshCurrent->addTriangle(ind0, ind1, ind2);
}
} // For each triangle
}
}
} // For each cell
sampler.movePositiveX();
} // For X
startOfRow.movePositiveY();
} // For Y
startOfSlice.movePositiveZ();
} // For Z
m_meshCurrent->setOffset(m_regSizeInVoxels.getLowerCorner());
POLYVOX_LOG_TRACE("Marching cubes surface extraction took ", timer.elapsedTimeInMilliSeconds(),
"ms (Region size = ", m_regSizeInVoxels.getWidthInVoxels(), "x", m_regSizeInVoxels.getHeightInVoxels(),
"x", m_regSizeInVoxels.getDepthInVoxels(), ")");
}
template<typename VolumeType, typename MeshType, typename ControllerType>
void MarchingCubesSurfaceExtractor<VolumeType, MeshType, ControllerType>::generateMeshForCell(uint32_t uXRegSpace, uint32_t uYRegSpace, uint32_t uZRegSpace, typename VolumeType::Sampler& sampler, typename VolumeType::VoxelType v111, uint8_t iCubeIndex, Array3DInt32& pIndicesX, Array3DInt32& pIndicesY, Array3DInt32& pIndicesZ, int32_t iXVolSpace, int32_t iYVolSpace, int32_t iZVolSpace)
{
// These three might not have been sampled, as v111 is the only one we sample every iteration.
typename VolumeType::VoxelType v110 = sampler.peekVoxel0px0py1nz();
typename VolumeType::VoxelType v101 = sampler.peekVoxel0px1ny0pz();
typename VolumeType::VoxelType v011 = sampler.peekVoxel1nx0py0pz();
const Vector3DFloat n000 = computeCentralDifferenceGradient(sampler);
/* Find the vertices where the surface intersects the cube */
if ((edgeTable[iCubeIndex] & 64) && (uXRegSpace > 0))
{
sampler.moveNegativeX();
POLYVOX_ASSERT(v011 != v111, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n100 = computeCentralDifferenceGradient(sampler);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v011)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v011));
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace - 1) + fInterp, static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace));
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v011, v111, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
sampler.movePositiveX();
}
if ((edgeTable[iCubeIndex] & 32) && (uYRegSpace > 0))
{
sampler.moveNegativeY();
POLYVOX_ASSERT(v101 != v111, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n010 = computeCentralDifferenceGradient(sampler);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v101)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v101));
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace - 1) + fInterp, static_cast<float>(uZRegSpace));
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v101, v111, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
sampler.movePositiveY();
}
if ((edgeTable[iCubeIndex] & 1024) && (uZRegSpace > 0))
{
sampler.moveNegativeZ();
POLYVOX_ASSERT(v110 != v111, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n001 = computeCentralDifferenceGradient(sampler);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v110)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v110));
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace - 1) + fInterp);
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v110, v111, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesZ(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
sampler.movePositiveZ();
}
// Now output the indices. For the first row, column or slice there aren't
// any (the region size in cells is one less than the region size in voxels)
if ((uXRegSpace != 0) && (uYRegSpace != 0) && (uZRegSpace != 0))
{
int32_t indlist[12];
sampler.setPosition(iXVolSpace, iYVolSpace, iZVolSpace);
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] != 0)
{
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
indlist[0] = pIndicesX(uXRegSpace, uYRegSpace - 1, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 2)
{
indlist[1] = pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 4)
{
indlist[2] = pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 8)
{
indlist[3] = pIndicesY(uXRegSpace - 1, uYRegSpace, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 16)
{
indlist[4] = pIndicesX(uXRegSpace, uYRegSpace - 1, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 32)
{
indlist[5] = pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 64)
{
indlist[6] = pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 128)
{
indlist[7] = pIndicesY(uXRegSpace - 1, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 256)
{
indlist[8] = pIndicesZ(uXRegSpace - 1, uYRegSpace - 1, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 512)
{
indlist[9] = pIndicesZ(uXRegSpace, uYRegSpace - 1, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 1024)
{
indlist[10] = pIndicesZ(uXRegSpace, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 2048)
{
indlist[11] = pIndicesZ(uXRegSpace - 1, uYRegSpace, uZRegSpace);
}
for (int i = 0; triTable[iCubeIndex][i] != -1; i += 3)
{
const int32_t ind0 = indlist[triTable[iCubeIndex][i]];
const int32_t ind1 = indlist[triTable[iCubeIndex][i + 1]];
const int32_t ind2 = indlist[triTable[iCubeIndex][i + 2]];
if ((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
{
m_meshCurrent->addTriangle(ind0, ind1, ind2);
}
} // For each triangle
}
}
}
}