Documentation style update for KDE/Kate.

This commit is contained in:
Daviw Williams 2012-12-14 15:38:02 +01:00
parent 2bc8e8e201
commit 298fb951b0

View File

@ -30,34 +30,34 @@ freely, subject to the following restrictions:
namespace PolyVox
{
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// This class provides a default implementation of a controller for the MarchingCubesSurfaceExtractor. It controls the behaviour of the
/// MarchingCubesSurfaceExtractor and provides the required properties from the underlying voxel type.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// PolyVox does not enforce any requirements regarding what data must be present in a voxel, and instead allows any primitive or user-defined
/// type to be used. However, the Marching Cubes algorithm does have some requirents about the underlying data in that conceptually it operates
/// on a <i>density field</i>. In addition, the PolyVox implementation of the Marching Cubes algorithm also understands the idea of each voxel
/// having a material which is copied into the vertex data.
///
/// Because we want the MarchingCubesSurfaceExtractor to work on <i>any</i> voxel type, we use a <i>Marching Cubes controller</i> (passed as
/// a parameter of the MarchingCubesSurfaceExtractor) to expose the required properties. This parameter defaults to the DefaultMarchingCubesController.
/// The main implementation of this class is designed to work with primitives data types, and the class is also specialised for the Material,
/// Density and MaterialdensityPair classes.
///
/// If you create a custom class for your voxel data then you probably want to include a specialisation of DefaultMarchingCubesController,
/// though you don't have to if you don't want to use the Marching Cubes algorithm or if you prefer to define a seperate Marching Cubes controller
/// and pass it as an explicit parameter (rather than relying on the default).
///
/// For primitive types, the DefaultMarchingCubesController considers the value of the voxel to represent it's density and just returns a constant
/// for the material. So you can, for example, run the MarchingCubesSurfaceExtractor on a volume of floats or ints.
///
/// It is possible to customise the behaviour of the controller by providing a threshold value through the constructor. The extracted surface
/// will pass through the density value specified by the threshold, and so you should make sure that the threshold value you choose is between
/// the minimum and maximum values found in your volume data. By default it is in the middle of the representable range of the underlying type.
///
/// \sa MarchingCubesSurfaceExtractor
///
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* This class provides a default implementation of a controller for the MarchingCubesSurfaceExtractor. It controls the behaviour of the
* MarchingCubesSurfaceExtractor and provides the required properties from the underlying voxel type.
*
* PolyVox does not enforce any requirements regarding what data must be present in a voxel, and instead allows any primitive or user-defined
* type to be used. However, the Marching Cubes algorithm does have some requirents about the underlying data in that conceptually it operates
* on a <i>density field</i>. In addition, the PolyVox implementation of the Marching Cubes algorithm also understands the idea of each voxel
* having a material which is copied into the vertex data.
*
* Because we want the MarchingCubesSurfaceExtractor to work on <i>any</i> voxel type, we use a <i>Marching Cubes controller</i> (passed as
* a parameter of the MarchingCubesSurfaceExtractor) to expose the required properties. This parameter defaults to the DefaultMarchingCubesController.
* The main implementation of this class is designed to work with primitives data types, and the class is also specialised for the Material,
* Density and MaterialdensityPair classes.
*
* If you create a custom class for your voxel data then you probably want to include a specialisation of DefaultMarchingCubesController,
* though you don't have to if you don't want to use the Marching Cubes algorithm or if you prefer to define a seperate Marching Cubes controller
* and pass it as an explicit parameter (rather than relying on the default).
*
* For primitive types, the DefaultMarchingCubesController considers the value of the voxel to represent it's density and just returns a constant
* for the material. So you can, for example, run the MarchingCubesSurfaceExtractor on a volume of floats or ints.
*
* It is possible to customise the behaviour of the controller by providing a threshold value through the constructor. The extracted surface
* will pass through the density value specified by the threshold, and so you should make sure that the threshold value you choose is between
* the minimum and maximum values found in your volume data. By default it is in the middle of the representable range of the underlying type.
*
* \sa MarchingCubesSurfaceExtractor
*
*/
template<typename VoxelType>
class DefaultMarchingCubesController
{
@ -69,13 +69,13 @@ namespace PolyVox
/// but this is not really desirable on modern hardware. We'll probably come back to material representation in the future.
typedef float MaterialType;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// Constructor
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// This version of the constructor takes no parameters and sets the threshold to the middle of the representable range of the underlying type.
/// For example, if the voxel type is 'uint8_t' then the representable range is 0-255, and the threshold will be set to 127. On the other hand,
/// if the voxel type is 'float' then the representable range is -FLT_MAX to FLT_MAX and the threshold will be set to zero.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor
*
* This version of the constructor takes no parameters and sets the threshold to the middle of the representable range of the underlying type.
* For example, if the voxel type is 'uint8_t' then the representable range is 0-255, and the threshold will be set to 127. On the other hand,
* if the voxel type is 'float' then the representable range is -FLT_MAX to FLT_MAX and the threshold will be set to zero.
*/
DefaultMarchingCubesController(void)
:m_tThreshold(((std::numeric_limits<DensityType>::min)() + (std::numeric_limits<DensityType>::max)()) / 2)
,m_eWrapMode(WrapModes::Border)
@ -83,23 +83,23 @@ namespace PolyVox
{
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// Converts the underlying voxel type into a density value.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// The default implementation of this function just returns the voxel type directly and is suitable for primitives types. Specialisations of
/// this class can modify this behaviour.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Converts the underlying voxel type into a density value.
*
* The default implementation of this function just returns the voxel type directly and is suitable for primitives types. Specialisations of
* this class can modify this behaviour.
*/
DensityType convertToDensity(VoxelType voxel)
{
return voxel;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// Converts the underlying voxel type into a material value.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// The default implementation of this function just returns the constant '1'. There's not much else it can do, as it needs to work with primitive
/// types and the actual value of the type is already being considered to be the density. Specialisations of this class can modify this behaviour.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Converts the underlying voxel type into a material value.
*
* The default implementation of this function just returns the constant '1'. There's not much else it can do, as it needs to work with primitive
* types and the actual value of the type is already being considered to be the density. Specialisations of this class can modify this behaviour.
*/
MaterialType convertToMaterial(VoxelType /*voxel*/)
{
return 1;
@ -110,13 +110,13 @@ namespace PolyVox
return m_tBorder;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// Returns the density value which was passed to the constructor.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/// As mentioned in the class description, the extracted surface will pass through the density value specified by the threshold, and so you
/// should make sure that the threshold value you choose is between the minimum and maximum values found in your volume data. By default it
///is in the middle of the representable range of the underlying type.
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns the density value which was passed to the constructor.
*
* As mentioned in the class description, the extracted surface will pass through the density value specified by the threshold, and so you
* should make sure that the threshold value you choose is between the minimum and maximum values found in your volume data. By default it
* is in the middle of the representable range of the underlying type.
*/
DensityType getThreshold(void)
{
return m_tThreshold;