Reverted some changes which were just for testing the new normal encoding.

This commit is contained in:
David Williams
2014-07-24 22:21:53 +02:00
parent f9ee5a10b4
commit 2b7ef5b966
3 changed files with 50 additions and 75 deletions

View File

@ -1,19 +1,19 @@
#version 130
// Passed in from the vertex shader
in vec4 worldPosition;
in vec3 worldNormal;
// the color that gets written to the display
out vec4 outputColor;
void main()
{
// Again, for the purposes of these examples we cannot be sure that per-vertex normals are provided. A sensible fallback
// is to use this little trick to compute per-fragment flat-shaded normals from the world positions using derivative operations.
vec3 normal = normalize(cross(dFdy(worldPosition.xyz), dFdx(worldPosition.xyz)));
// We are just using the normal as the output color, and making it lighter so it looks a bit nicer.
// Obviously a real shader would also do texuring, lighting, or whatever is required for the application.
outputColor = vec4(abs(worldNormal.xyz), 1.0);
}
#version 130
// Passed in from the vertex shader
in vec4 worldPosition;
in vec4 worldNormal;
// the color that gets written to the display
out vec4 outputColor;
void main()
{
// Again, for the purposes of these examples we cannot be sure that per-vertex normals are provided. A sensible fallback
// is to use this little trick to compute per-fragment flat-shaded normals from the world positions using derivative operations.
vec3 normal = normalize(cross(dFdy(worldPosition.xyz), dFdx(worldPosition.xyz)));
// We are just using the normal as the output color, and making it lighter so it looks a bit nicer.
// Obviously a real shader would also do texuring, lighting, or whatever is required for the application.
outputColor = vec4(abs(normal) * 0.5 + vec3(0.5, 0.5, 0.5), 1.0);
}

View File

@ -1,25 +1,20 @@
#version 140
in vec4 position; // This will be the position of the vertex in model-space
in vec3 normal;
// The usual matrices are provided
uniform mat4 cameraToClipMatrix;
uniform mat4 worldToCameraMatrix;
uniform mat4 modelToWorldMatrix;
// This will be used by the fragment shader to calculate flat-shaded normals. This is an unconventional approach
// but we use it in this example framework because not all surface extractor generate surface normals.
out vec4 worldPosition;
out vec3 worldNormal;
void main()
{
// Standard sequence of OpenGL transformations.
worldPosition = modelToWorldMatrix * position;
vec4 cameraPosition = worldToCameraMatrix * worldPosition;
worldNormal = normal;
gl_Position = cameraToClipMatrix * cameraPosition;
}
#version 140
in vec4 position; // This will be the position of the vertex in model-space
// The usual matrices are provided
uniform mat4 cameraToClipMatrix;
uniform mat4 worldToCameraMatrix;
uniform mat4 modelToWorldMatrix;
// This will be used by the fragment shader to calculate flat-shaded normals. This is an unconventional approach
// but we use it in this example framework because not all surface extractor generate surface normals.
out vec4 worldPosition;
void main()
{
// Standard sequence of OpenGL transformations.
worldPosition = modelToWorldMatrix * position;
vec4 cameraPosition = worldToCameraMatrix * worldPosition;
gl_Position = cameraToClipMatrix * cameraPosition;
}