Fix for linker errors when using MeshDecimator.
This commit is contained in:
parent
96cdf7b9a5
commit
5891d56e12
@ -8,6 +8,7 @@ SET(CORE_SRC_FILES
|
||||
source/AStarPathfinder.cpp
|
||||
source/GradientEstimators.cpp
|
||||
source/Log.cpp
|
||||
source/MeshDecimator.cpp
|
||||
source/Region.cpp
|
||||
source/VertexTypes.cpp
|
||||
source/VoxelFilters.cpp
|
||||
|
@ -24,7 +24,10 @@ freely, subject to the following restrictions:
|
||||
#ifndef __PolyVox_MeshDecimator_H__
|
||||
#define __PolyVox_MeshDecimator_H__
|
||||
|
||||
#include "Vector.h"
|
||||
|
||||
#include <bitset>
|
||||
#include <vector>
|
||||
|
||||
namespace PolyVox
|
||||
{
|
||||
@ -64,7 +67,7 @@ namespace PolyVox
|
||||
{
|
||||
//Used to keep track of when a vertex is
|
||||
//on one or more faces of the region
|
||||
enum POLYVOXCORE_API RegionFaceFlags
|
||||
enum RegionFaceFlags
|
||||
{
|
||||
RFF_ON_REGION_FACE_NEG_X,
|
||||
RFF_ON_REGION_FACE_POS_X ,
|
||||
|
@ -116,131 +116,6 @@ namespace PolyVox
|
||||
}
|
||||
}
|
||||
|
||||
template<>
|
||||
void MeshDecimator<PositionMaterial>::fillInitialVertexMetadata(std::vector<InitialVertexMetadata>& vecVertexMetadata)
|
||||
{
|
||||
vecVertexMetadata.clear();
|
||||
vecVertexMetadata.resize(m_pOutputMesh->m_vecVertices.size());
|
||||
//Initialise the metadata
|
||||
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
|
||||
{
|
||||
vecVertexMetadata[ct].normal.setElements(0,0,0);
|
||||
vecVertexMetadata[ct].isOnMaterialEdge = false;
|
||||
vecVertexMetadata[ct].isOnRegionFace.reset();
|
||||
}
|
||||
|
||||
//Identify duplicate vertices, as they lie on the material edge. To do this we convert into integers and sort
|
||||
//(first on z, then y, then x). They should be mostly in order as this is the order they come out of the
|
||||
//CubicSurfaceExtractor in. Duplicates are now neighbours in the resulting list so just scan through for pairs.
|
||||
std::vector<IntVertex> intVertices;
|
||||
intVertices.reserve(m_pOutputMesh->m_vecVertices.size());
|
||||
for(int ct = 0; ct < m_pOutputMesh->m_vecVertices.size(); ct++)
|
||||
{
|
||||
const Vector3DFloat& floatPos = m_pOutputMesh->m_vecVertices[ct].position;
|
||||
IntVertex intVertex(static_cast<uint32_t>(floatPos.getX()), static_cast<uint32_t>(floatPos.getY()), static_cast<uint32_t>(floatPos.getZ()), ct);
|
||||
intVertices.push_back(intVertex);
|
||||
}
|
||||
|
||||
//Do the sorting so that duplicate become neighbours
|
||||
sort(intVertices.begin(), intVertices.end());
|
||||
|
||||
//Find neighbours which are duplicates.
|
||||
for(int ct = 0; ct < intVertices.size() - 1; ct++)
|
||||
{
|
||||
const IntVertex& v0 = intVertices[ct+0];
|
||||
const IntVertex& v1 = intVertices[ct+1];
|
||||
|
||||
if((v0.x == v1.x) && (v0.y == v1.y) && (v0.z == v1.z))
|
||||
{
|
||||
vecVertexMetadata[v0.index].isOnMaterialEdge = true;
|
||||
vecVertexMetadata[v1.index].isOnMaterialEdge = true;
|
||||
}
|
||||
}
|
||||
|
||||
//Compute an approcimation to the normal, used when deciding if an edge can collapse.
|
||||
for(int ct = 0; ct < m_pOutputMesh->m_vecVertices.size(); ct++)
|
||||
{
|
||||
Vector3DFloat sumOfNormals(0.0f,0.0f,0.0f);
|
||||
for(vector<uint32_t>::const_iterator iter = trianglesUsingVertex[ct].cbegin(); iter != trianglesUsingVertex[ct].cend(); iter++)
|
||||
{
|
||||
sumOfNormals += m_vecTriangles[*iter].normal;
|
||||
}
|
||||
|
||||
vecVertexMetadata[ct].normal = sumOfNormals;
|
||||
vecVertexMetadata[ct].normal.normalise();
|
||||
}
|
||||
|
||||
//Identify those vertices on the edge of a region. Care will need to be taken when moving them.
|
||||
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
|
||||
{
|
||||
Region regTransformed = m_pOutputMesh->m_Region;
|
||||
regTransformed.shift(regTransformed.getLowerCorner() * static_cast<int16_t>(-1));
|
||||
|
||||
//Plus and minus X
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() < regTransformed.getLowerCorner().getX() + 0.001f);
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() > regTransformed.getUpperCorner().getX() - 0.001f);
|
||||
//Plus and minus Y
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() < regTransformed.getLowerCorner().getY() + 0.001f);
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() > regTransformed.getUpperCorner().getY() - 0.001f);
|
||||
//Plus and minus Z
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() < regTransformed.getLowerCorner().getZ() + 0.001f);
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() > regTransformed.getUpperCorner().getZ() - 0.001f);
|
||||
}
|
||||
}
|
||||
|
||||
template<>
|
||||
void MeshDecimator<PositionMaterialNormal>::fillInitialVertexMetadata(std::vector<InitialVertexMetadata>& vecVertexMetadata)
|
||||
{
|
||||
vecVertexMetadata.clear();
|
||||
vecVertexMetadata.resize(m_pOutputMesh->m_vecVertices.size());
|
||||
|
||||
//Initialise the metadata
|
||||
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
|
||||
{
|
||||
vecVertexMetadata[ct].isOnRegionFace.reset();
|
||||
vecVertexMetadata[ct].isOnMaterialEdge = false;
|
||||
vecVertexMetadata[ct].normal = m_pOutputMesh->m_vecVertices[ct].normal;
|
||||
}
|
||||
|
||||
//Identify those vertices on the edge of a region. Care will need to be taken when moving them.
|
||||
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
|
||||
{
|
||||
Region regTransformed = m_pOutputMesh->m_Region;
|
||||
regTransformed.shift(regTransformed.getLowerCorner() * static_cast<int16_t>(-1));
|
||||
|
||||
//Plus and minus X
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() < regTransformed.getLowerCorner().getX() + 0.001f);
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() > regTransformed.getUpperCorner().getX() - 0.001f);
|
||||
//Plus and minus Y
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() < regTransformed.getLowerCorner().getY() + 0.001f);
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() > regTransformed.getUpperCorner().getY() - 0.001f);
|
||||
//Plus and minus Z
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() < regTransformed.getLowerCorner().getZ() + 0.001f);
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() > regTransformed.getUpperCorner().getZ() - 0.001f);
|
||||
}
|
||||
|
||||
//If all three vertices have the same material then we are not on a material edge. If any vertex has a different
|
||||
//material then all three vertices are on a material edge. E.g. If one vertex has material 'a' and the other two
|
||||
//have material 'b', then the two 'b's are still on an edge (with 'a') even though they are the same as eachother.
|
||||
for(int ct = 0; ct < m_vecTriangles.size(); ct++)
|
||||
{
|
||||
uint32_t v0 = m_vecTriangles[ct].v0;
|
||||
uint32_t v1 = m_vecTriangles[ct].v1;
|
||||
uint32_t v2 = m_vecTriangles[ct].v2;
|
||||
|
||||
bool allMatch =
|
||||
(m_pOutputMesh->m_vecVertices[v0].material == m_pOutputMesh->m_vecVertices[v1].material) &&
|
||||
(m_pOutputMesh->m_vecVertices[v1].material == m_pOutputMesh->m_vecVertices[v2].material);
|
||||
|
||||
if(!allMatch)
|
||||
{
|
||||
vecVertexMetadata[v0].isOnMaterialEdge = true;
|
||||
vecVertexMetadata[v1].isOnMaterialEdge = true;
|
||||
vecVertexMetadata[v2].isOnMaterialEdge = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename VertexType>
|
||||
uint32_t MeshDecimator<VertexType>::performDecimationPass(float m_fMinDotProductForCollapse)
|
||||
{
|
||||
@ -349,32 +224,6 @@ namespace PolyVox
|
||||
return bCanCollapse;
|
||||
}
|
||||
|
||||
template<>
|
||||
bool MeshDecimator<PositionMaterialNormal>::canCollapseNormalEdge(uint32_t uSrc, uint32_t uDst)
|
||||
{
|
||||
if(m_vecInitialVertexMetadata[uSrc].normal.dot(m_vecInitialVertexMetadata[uDst].normal) < m_fMinDotProductForCollapse)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
//With the marching cubes surface we honour the user specified threshold
|
||||
return !collapseChangesFaceNormals(uSrc, uDst, m_fMinDotProductForCollapse);
|
||||
}
|
||||
|
||||
template<>
|
||||
bool MeshDecimator<PositionMaterial>::canCollapseNormalEdge(uint32_t uSrc, uint32_t uDst)
|
||||
{
|
||||
//We don't actually use the normal here, because we want to allow face
|
||||
//vertices to collapse onto edge vertices. Simply checking whether anything
|
||||
//has flipped has proved to be the most robust approach, though rather slow.
|
||||
//It's not sufficient to just check the normals, there can be holes in the middle
|
||||
//of the mesh for example.
|
||||
|
||||
//User specified threshold is not used for cubic surface, any
|
||||
//movement is too much (but allow for floating point error).
|
||||
return !collapseChangesFaceNormals(uSrc, uDst, 0.999f);
|
||||
}
|
||||
|
||||
template <typename VertexType>
|
||||
bool MeshDecimator<VertexType>::canCollapseRegionEdge(uint32_t uSrc, uint32_t uDst)
|
||||
{
|
||||
|
157
library/PolyVoxCore/source/MeshDecimator.cpp
Normal file
157
library/PolyVoxCore/source/MeshDecimator.cpp
Normal file
@ -0,0 +1,157 @@
|
||||
#include "MeshDecimator.h"
|
||||
|
||||
#include "SurfaceMesh.h"
|
||||
|
||||
namespace PolyVox
|
||||
{
|
||||
template<>
|
||||
POLYVOXCORE_API void MeshDecimator<PositionMaterial>::fillInitialVertexMetadata(std::vector<InitialVertexMetadata>& vecVertexMetadata)
|
||||
{
|
||||
vecVertexMetadata.clear();
|
||||
vecVertexMetadata.resize(m_pOutputMesh->m_vecVertices.size());
|
||||
//Initialise the metadata
|
||||
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
|
||||
{
|
||||
vecVertexMetadata[ct].normal.setElements(0,0,0);
|
||||
vecVertexMetadata[ct].isOnMaterialEdge = false;
|
||||
vecVertexMetadata[ct].isOnRegionFace.reset();
|
||||
}
|
||||
|
||||
//Identify duplicate vertices, as they lie on the material edge. To do this we convert into integers and sort
|
||||
//(first on z, then y, then x). They should be mostly in order as this is the order they come out of the
|
||||
//CubicSurfaceExtractor in. Duplicates are now neighbours in the resulting list so just scan through for pairs.
|
||||
std::vector<IntVertex> intVertices;
|
||||
intVertices.reserve(m_pOutputMesh->m_vecVertices.size());
|
||||
for(int ct = 0; ct < m_pOutputMesh->m_vecVertices.size(); ct++)
|
||||
{
|
||||
const Vector3DFloat& floatPos = m_pOutputMesh->m_vecVertices[ct].position;
|
||||
IntVertex intVertex(static_cast<uint32_t>(floatPos.getX()), static_cast<uint32_t>(floatPos.getY()), static_cast<uint32_t>(floatPos.getZ()), ct);
|
||||
intVertices.push_back(intVertex);
|
||||
}
|
||||
|
||||
//Do the sorting so that duplicate become neighbours
|
||||
sort(intVertices.begin(), intVertices.end());
|
||||
|
||||
//Find neighbours which are duplicates.
|
||||
for(int ct = 0; ct < intVertices.size() - 1; ct++)
|
||||
{
|
||||
const IntVertex& v0 = intVertices[ct+0];
|
||||
const IntVertex& v1 = intVertices[ct+1];
|
||||
|
||||
if((v0.x == v1.x) && (v0.y == v1.y) && (v0.z == v1.z))
|
||||
{
|
||||
vecVertexMetadata[v0.index].isOnMaterialEdge = true;
|
||||
vecVertexMetadata[v1.index].isOnMaterialEdge = true;
|
||||
}
|
||||
}
|
||||
|
||||
//Compute an approcimation to the normal, used when deciding if an edge can collapse.
|
||||
for(int ct = 0; ct < m_pOutputMesh->m_vecVertices.size(); ct++)
|
||||
{
|
||||
Vector3DFloat sumOfNormals(0.0f,0.0f,0.0f);
|
||||
for(vector<uint32_t>::const_iterator iter = trianglesUsingVertex[ct].cbegin(); iter != trianglesUsingVertex[ct].cend(); iter++)
|
||||
{
|
||||
sumOfNormals += m_vecTriangles[*iter].normal;
|
||||
}
|
||||
|
||||
vecVertexMetadata[ct].normal = sumOfNormals;
|
||||
vecVertexMetadata[ct].normal.normalise();
|
||||
}
|
||||
|
||||
//Identify those vertices on the edge of a region. Care will need to be taken when moving them.
|
||||
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
|
||||
{
|
||||
Region regTransformed = m_pOutputMesh->m_Region;
|
||||
regTransformed.shift(regTransformed.getLowerCorner() * static_cast<int16_t>(-1));
|
||||
|
||||
//Plus and minus X
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() < regTransformed.getLowerCorner().getX() + 0.001f);
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() > regTransformed.getUpperCorner().getX() - 0.001f);
|
||||
//Plus and minus Y
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() < regTransformed.getLowerCorner().getY() + 0.001f);
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() > regTransformed.getUpperCorner().getY() - 0.001f);
|
||||
//Plus and minus Z
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() < regTransformed.getLowerCorner().getZ() + 0.001f);
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() > regTransformed.getUpperCorner().getZ() - 0.001f);
|
||||
}
|
||||
}
|
||||
|
||||
template<>
|
||||
POLYVOXCORE_API void MeshDecimator<PositionMaterialNormal>::fillInitialVertexMetadata(std::vector<InitialVertexMetadata>& vecVertexMetadata)
|
||||
{
|
||||
vecVertexMetadata.clear();
|
||||
vecVertexMetadata.resize(m_pOutputMesh->m_vecVertices.size());
|
||||
|
||||
//Initialise the metadata
|
||||
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
|
||||
{
|
||||
vecVertexMetadata[ct].isOnRegionFace.reset();
|
||||
vecVertexMetadata[ct].isOnMaterialEdge = false;
|
||||
vecVertexMetadata[ct].normal = m_pOutputMesh->m_vecVertices[ct].normal;
|
||||
}
|
||||
|
||||
//Identify those vertices on the edge of a region. Care will need to be taken when moving them.
|
||||
for(int ct = 0; ct < vecVertexMetadata.size(); ct++)
|
||||
{
|
||||
Region regTransformed = m_pOutputMesh->m_Region;
|
||||
regTransformed.shift(regTransformed.getLowerCorner() * static_cast<int16_t>(-1));
|
||||
|
||||
//Plus and minus X
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() < regTransformed.getLowerCorner().getX() + 0.001f);
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_X, m_pOutputMesh->m_vecVertices[ct].getPosition().getX() > regTransformed.getUpperCorner().getX() - 0.001f);
|
||||
//Plus and minus Y
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() < regTransformed.getLowerCorner().getY() + 0.001f);
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Y, m_pOutputMesh->m_vecVertices[ct].getPosition().getY() > regTransformed.getUpperCorner().getY() - 0.001f);
|
||||
//Plus and minus Z
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_NEG_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() < regTransformed.getLowerCorner().getZ() + 0.001f);
|
||||
vecVertexMetadata[ct].isOnRegionFace.set(RFF_ON_REGION_FACE_POS_Z, m_pOutputMesh->m_vecVertices[ct].getPosition().getZ() > regTransformed.getUpperCorner().getZ() - 0.001f);
|
||||
}
|
||||
|
||||
//If all three vertices have the same material then we are not on a material edge. If any vertex has a different
|
||||
//material then all three vertices are on a material edge. E.g. If one vertex has material 'a' and the other two
|
||||
//have material 'b', then the two 'b's are still on an edge (with 'a') even though they are the same as eachother.
|
||||
for(int ct = 0; ct < m_vecTriangles.size(); ct++)
|
||||
{
|
||||
uint32_t v0 = m_vecTriangles[ct].v0;
|
||||
uint32_t v1 = m_vecTriangles[ct].v1;
|
||||
uint32_t v2 = m_vecTriangles[ct].v2;
|
||||
|
||||
bool allMatch =
|
||||
(m_pOutputMesh->m_vecVertices[v0].material == m_pOutputMesh->m_vecVertices[v1].material) &&
|
||||
(m_pOutputMesh->m_vecVertices[v1].material == m_pOutputMesh->m_vecVertices[v2].material);
|
||||
|
||||
if(!allMatch)
|
||||
{
|
||||
vecVertexMetadata[v0].isOnMaterialEdge = true;
|
||||
vecVertexMetadata[v1].isOnMaterialEdge = true;
|
||||
vecVertexMetadata[v2].isOnMaterialEdge = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<>
|
||||
POLYVOXCORE_API bool MeshDecimator<PositionMaterialNormal>::canCollapseNormalEdge(uint32_t uSrc, uint32_t uDst)
|
||||
{
|
||||
if(m_vecInitialVertexMetadata[uSrc].normal.dot(m_vecInitialVertexMetadata[uDst].normal) < m_fMinDotProductForCollapse)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
//With the marching cubes surface we honour the user specified threshold
|
||||
return !collapseChangesFaceNormals(uSrc, uDst, m_fMinDotProductForCollapse);
|
||||
}
|
||||
|
||||
template<>
|
||||
POLYVOXCORE_API bool MeshDecimator<PositionMaterial>::canCollapseNormalEdge(uint32_t uSrc, uint32_t uDst)
|
||||
{
|
||||
//We don't actually use the normal here, because we want to allow face
|
||||
//vertices to collapse onto edge vertices. Simply checking whether anything
|
||||
//has flipped has proved to be the most robust approach, though rather slow.
|
||||
//It's not sufficient to just check the normals, there can be holes in the middle
|
||||
//of the mesh for example.
|
||||
|
||||
//User specified threshold is not used for cubic surface, any
|
||||
//movement is too much (but allow for floating point error).
|
||||
return !collapseChangesFaceNormals(uSrc, uDst, 0.999f);
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user