| 
							
							
							
						 |  |  | @@ -1,624 +0,0 @@ | 
		
	
		
			
				|  |  |  |  | /******************************************************************************* | 
		
	
		
			
				|  |  |  |  | Copyright (c) 2005-2009 David Williams | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | This software is provided 'as-is', without any express or implied | 
		
	
		
			
				|  |  |  |  | warranty. In no event will the authors be held liable for any damages | 
		
	
		
			
				|  |  |  |  | arising from the use of this software. | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | Permission is granted to anyone to use this software for any purpose, | 
		
	
		
			
				|  |  |  |  | including commercial applications, and to alter it and redistribute it | 
		
	
		
			
				|  |  |  |  | freely, subject to the following restrictions: | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |     1. The origin of this software must not be misrepresented; you must not | 
		
	
		
			
				|  |  |  |  |     claim that you wrote the original software. If you use this software | 
		
	
		
			
				|  |  |  |  |     in a product, an acknowledgment in the product documentation would be | 
		
	
		
			
				|  |  |  |  |     appreciated but is not required. | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |     2. Altered source versions must be plainly marked as such, and must not be | 
		
	
		
			
				|  |  |  |  |     misrepresented as being the original software. | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |     3. This notice may not be removed or altered from any source | 
		
	
		
			
				|  |  |  |  |     distribution. 	 | 
		
	
		
			
				|  |  |  |  | *******************************************************************************/ | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | namespace PolyVox | 
		
	
		
			
				|  |  |  |  | { | 
		
	
		
			
				|  |  |  |  | 	template<typename VolumeType, typename Controller> | 
		
	
		
			
				|  |  |  |  | 	SurfaceExtractor<VolumeType, Controller>::SurfaceExtractor(VolumeType* volData, Region region, SurfaceMesh<PositionMaterialNormal>* result, Controller controller) | 
		
	
		
			
				|  |  |  |  | 		:m_volData(volData) | 
		
	
		
			
				|  |  |  |  | 		,m_sampVolume(volData) | 
		
	
		
			
				|  |  |  |  | 		,m_meshCurrent(result) | 
		
	
		
			
				|  |  |  |  | 		,m_regSizeInVoxels(region) | 
		
	
		
			
				|  |  |  |  | 	{ | 
		
	
		
			
				|  |  |  |  | 		//m_regSizeInVoxels.cropTo(m_volData->getEnclosingRegion()); | 
		
	
		
			
				|  |  |  |  | 		m_regSizeInCells = m_regSizeInVoxels; | 
		
	
		
			
				|  |  |  |  | 		m_regSizeInCells.setUpperCorner(m_regSizeInCells.getUpperCorner() - Vector3DInt32(1,1,1)); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		m_controller = controller; | 
		
	
		
			
				|  |  |  |  | 		m_tThreshold = m_controller.getThreshold(); | 
		
	
		
			
				|  |  |  |  | 	} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 	template<typename VolumeType, typename Controller> | 
		
	
		
			
				|  |  |  |  | 	void SurfaceExtractor<VolumeType, Controller>::execute() | 
		
	
		
			
				|  |  |  |  | 	{		 | 
		
	
		
			
				|  |  |  |  | 		m_meshCurrent->clear(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		uint32_t uArrayWidth = m_regSizeInVoxels.getUpperCorner().getX() - m_regSizeInVoxels.getLowerCorner().getX() + 1; | 
		
	
		
			
				|  |  |  |  | 		uint32_t uArrayHeight = m_regSizeInVoxels.getUpperCorner().getY() - m_regSizeInVoxels.getLowerCorner().getY() + 1; | 
		
	
		
			
				|  |  |  |  | 		uint32_t arraySizes[2]= {uArrayWidth, uArrayHeight}; // Array dimensions | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		//For edge indices | 
		
	
		
			
				|  |  |  |  | 		Array2DInt32 m_pPreviousVertexIndicesX(arraySizes); | 
		
	
		
			
				|  |  |  |  | 		Array2DInt32 m_pPreviousVertexIndicesY(arraySizes); | 
		
	
		
			
				|  |  |  |  | 		Array2DInt32 m_pPreviousVertexIndicesZ(arraySizes); | 
		
	
		
			
				|  |  |  |  | 		Array2DInt32 m_pCurrentVertexIndicesX(arraySizes); | 
		
	
		
			
				|  |  |  |  | 		Array2DInt32 m_pCurrentVertexIndicesY(arraySizes); | 
		
	
		
			
				|  |  |  |  | 		Array2DInt32 m_pCurrentVertexIndicesZ(arraySizes); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		Array2DUint8 pPreviousBitmask(arraySizes); | 
		
	
		
			
				|  |  |  |  | 		Array2DUint8 pCurrentBitmask(arraySizes); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		//Create a region corresponding to the first slice | 
		
	
		
			
				|  |  |  |  | 		m_regSlicePrevious = m_regSizeInVoxels; | 
		
	
		
			
				|  |  |  |  | 		Vector3DInt32 v3dUpperCorner = m_regSlicePrevious.getUpperCorner(); | 
		
	
		
			
				|  |  |  |  | 		v3dUpperCorner.setZ(m_regSlicePrevious.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick. | 
		
	
		
			
				|  |  |  |  | 		m_regSlicePrevious.setUpperCorner(v3dUpperCorner); | 
		
	
		
			
				|  |  |  |  | 		m_regSliceCurrent = m_regSlicePrevious;	 | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		uint32_t uNoOfNonEmptyCellsForSlice0 = 0; | 
		
	
		
			
				|  |  |  |  | 		uint32_t uNoOfNonEmptyCellsForSlice1 = 0; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		//Process the first slice (previous slice not available) | 
		
	
		
			
				|  |  |  |  | 		computeBitmaskForSlice<false>(pPreviousBitmask, pCurrentBitmask); | 
		
	
		
			
				|  |  |  |  | 		uNoOfNonEmptyCellsForSlice1 = m_uNoOfOccupiedCells; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		if(uNoOfNonEmptyCellsForSlice1 != 0) | 
		
	
		
			
				|  |  |  |  | 		{ | 
		
	
		
			
				|  |  |  |  | 			memset(m_pCurrentVertexIndicesX.getRawData(), 0xff, m_pCurrentVertexIndicesX.getNoOfElements() * 4); | 
		
	
		
			
				|  |  |  |  | 			memset(m_pCurrentVertexIndicesY.getRawData(), 0xff, m_pCurrentVertexIndicesY.getNoOfElements() * 4); | 
		
	
		
			
				|  |  |  |  | 			memset(m_pCurrentVertexIndicesZ.getRawData(), 0xff, m_pCurrentVertexIndicesZ.getNoOfElements() * 4); | 
		
	
		
			
				|  |  |  |  | 			generateVerticesForSlice(pCurrentBitmask, m_pCurrentVertexIndicesX, m_pCurrentVertexIndicesY, m_pCurrentVertexIndicesZ);				 | 
		
	
		
			
				|  |  |  |  | 		} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1); | 
		
	
		
			
				|  |  |  |  | 		pPreviousBitmask.swap(pCurrentBitmask); | 
		
	
		
			
				|  |  |  |  | 		m_pPreviousVertexIndicesX.swap(m_pCurrentVertexIndicesX); | 
		
	
		
			
				|  |  |  |  | 		m_pPreviousVertexIndicesY.swap(m_pCurrentVertexIndicesY); | 
		
	
		
			
				|  |  |  |  | 		m_pPreviousVertexIndicesZ.swap(m_pCurrentVertexIndicesZ); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		m_regSlicePrevious = m_regSliceCurrent; | 
		
	
		
			
				|  |  |  |  | 		m_regSliceCurrent.shift(Vector3DInt32(0,0,1)); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		//Process the other slices (previous slice is available) | 
		
	
		
			
				|  |  |  |  | 		for(int32_t uSlice = 1; uSlice <= m_regSizeInVoxels.getUpperCorner().getZ() - m_regSizeInVoxels.getLowerCorner().getZ(); uSlice++) | 
		
	
		
			
				|  |  |  |  | 		{	 | 
		
	
		
			
				|  |  |  |  | 			computeBitmaskForSlice<true>(pPreviousBitmask, pCurrentBitmask); | 
		
	
		
			
				|  |  |  |  | 			uNoOfNonEmptyCellsForSlice1 = m_uNoOfOccupiedCells; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 			if(uNoOfNonEmptyCellsForSlice1 != 0) | 
		
	
		
			
				|  |  |  |  | 			{ | 
		
	
		
			
				|  |  |  |  | 				memset(m_pCurrentVertexIndicesX.getRawData(), 0xff, m_pCurrentVertexIndicesX.getNoOfElements() * 4); | 
		
	
		
			
				|  |  |  |  | 				memset(m_pCurrentVertexIndicesY.getRawData(), 0xff, m_pCurrentVertexIndicesY.getNoOfElements() * 4); | 
		
	
		
			
				|  |  |  |  | 				memset(m_pCurrentVertexIndicesZ.getRawData(), 0xff, m_pCurrentVertexIndicesZ.getNoOfElements() * 4); | 
		
	
		
			
				|  |  |  |  | 				generateVerticesForSlice(pCurrentBitmask, m_pCurrentVertexIndicesX, m_pCurrentVertexIndicesY, m_pCurrentVertexIndicesZ);				 | 
		
	
		
			
				|  |  |  |  | 			} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 			if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0)) | 
		
	
		
			
				|  |  |  |  | 			{ | 
		
	
		
			
				|  |  |  |  | 				generateIndicesForSlice(pPreviousBitmask, m_pPreviousVertexIndicesX, m_pPreviousVertexIndicesY, m_pPreviousVertexIndicesZ, m_pCurrentVertexIndicesX, m_pCurrentVertexIndicesY); | 
		
	
		
			
				|  |  |  |  | 			} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 			std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1); | 
		
	
		
			
				|  |  |  |  | 			pPreviousBitmask.swap(pCurrentBitmask); | 
		
	
		
			
				|  |  |  |  | 			m_pPreviousVertexIndicesX.swap(m_pCurrentVertexIndicesX); | 
		
	
		
			
				|  |  |  |  | 			m_pPreviousVertexIndicesY.swap(m_pCurrentVertexIndicesY); | 
		
	
		
			
				|  |  |  |  | 			m_pPreviousVertexIndicesZ.swap(m_pCurrentVertexIndicesZ); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 			m_regSlicePrevious = m_regSliceCurrent; | 
		
	
		
			
				|  |  |  |  | 			m_regSliceCurrent.shift(Vector3DInt32(0,0,1)); | 
		
	
		
			
				|  |  |  |  | 		} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		m_meshCurrent->m_Region = m_regSizeInVoxels; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		m_meshCurrent->m_vecLodRecords.clear(); | 
		
	
		
			
				|  |  |  |  | 		LodRecord lodRecord; | 
		
	
		
			
				|  |  |  |  | 		lodRecord.beginIndex = 0; | 
		
	
		
			
				|  |  |  |  | 		lodRecord.endIndex = m_meshCurrent->getNoOfIndices(); | 
		
	
		
			
				|  |  |  |  | 		m_meshCurrent->m_vecLodRecords.push_back(lodRecord); | 
		
	
		
			
				|  |  |  |  | 	} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 	template<typename VolumeType, typename Controller> | 
		
	
		
			
				|  |  |  |  | 	template<bool isPrevZAvail> | 
		
	
		
			
				|  |  |  |  | 	uint32_t SurfaceExtractor<VolumeType, Controller>::computeBitmaskForSlice(const Array2DUint8& pPreviousBitmask, Array2DUint8& pCurrentBitmask) | 
		
	
		
			
				|  |  |  |  | 	{ | 
		
	
		
			
				|  |  |  |  | 		m_uNoOfOccupiedCells = 0; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		const int32_t iMaxXVolSpace = m_regSliceCurrent.getUpperCorner().getX(); | 
		
	
		
			
				|  |  |  |  | 		const int32_t iMaxYVolSpace = m_regSliceCurrent.getUpperCorner().getY(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		iZVolSpace = m_regSliceCurrent.getLowerCorner().getZ(); | 
		
	
		
			
				|  |  |  |  | 		uZRegSpace = iZVolSpace - m_regSizeInVoxels.getLowerCorner().getZ(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		//Process the lower left corner | 
		
	
		
			
				|  |  |  |  | 		iYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); | 
		
	
		
			
				|  |  |  |  | 		iXVolSpace = m_regSliceCurrent.getLowerCorner().getX(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX(); | 
		
	
		
			
				|  |  |  |  | 		uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace); | 
		
	
		
			
				|  |  |  |  | 		computeBitmaskForCell<false, false, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		//Process the edge where x is minimal. | 
		
	
		
			
				|  |  |  |  | 		iXVolSpace = m_regSliceCurrent.getLowerCorner().getX(); | 
		
	
		
			
				|  |  |  |  | 		m_sampVolume.setPosition(iXVolSpace, m_regSliceCurrent.getLowerCorner().getY(), iZVolSpace); | 
		
	
		
			
				|  |  |  |  | 		for(iYVolSpace = m_regSliceCurrent.getLowerCorner().getY() + 1; iYVolSpace <= iMaxYVolSpace; iYVolSpace++) | 
		
	
		
			
				|  |  |  |  | 		{ | 
		
	
		
			
				|  |  |  |  | 			uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX(); | 
		
	
		
			
				|  |  |  |  | 			uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 			m_sampVolume.movePositiveY(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 			computeBitmaskForCell<false, true, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask); | 
		
	
		
			
				|  |  |  |  | 		} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		//Process the edge where y is minimal. | 
		
	
		
			
				|  |  |  |  | 		iYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); | 
		
	
		
			
				|  |  |  |  | 		m_sampVolume.setPosition(m_regSliceCurrent.getLowerCorner().getX(), iYVolSpace, iZVolSpace); | 
		
	
		
			
				|  |  |  |  | 		for(iXVolSpace = m_regSliceCurrent.getLowerCorner().getX() + 1; iXVolSpace <= iMaxXVolSpace; iXVolSpace++) | 
		
	
		
			
				|  |  |  |  | 		{	 | 
		
	
		
			
				|  |  |  |  | 			uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX(); | 
		
	
		
			
				|  |  |  |  | 			uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 			m_sampVolume.movePositiveX(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 			computeBitmaskForCell<true, false, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask); | 
		
	
		
			
				|  |  |  |  | 		} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		//Process all remaining elemnents of the slice. In this case, previous x and y values are always available | 
		
	
		
			
				|  |  |  |  | 		for(iYVolSpace = m_regSliceCurrent.getLowerCorner().getY() + 1; iYVolSpace <= iMaxYVolSpace; iYVolSpace++) | 
		
	
		
			
				|  |  |  |  | 		{ | 
		
	
		
			
				|  |  |  |  | 			m_sampVolume.setPosition(m_regSliceCurrent.getLowerCorner().getX(), iYVolSpace, iZVolSpace); | 
		
	
		
			
				|  |  |  |  | 			for(iXVolSpace = m_regSliceCurrent.getLowerCorner().getX() + 1; iXVolSpace <= iMaxXVolSpace; iXVolSpace++) | 
		
	
		
			
				|  |  |  |  | 			{	 | 
		
	
		
			
				|  |  |  |  | 				uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX(); | 
		
	
		
			
				|  |  |  |  | 				uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 				m_sampVolume.movePositiveX(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 				computeBitmaskForCell<true, true, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask); | 
		
	
		
			
				|  |  |  |  | 			} | 
		
	
		
			
				|  |  |  |  | 		} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		return m_uNoOfOccupiedCells; | 
		
	
		
			
				|  |  |  |  | 	} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 	template<typename VolumeType, typename Controller> | 
		
	
		
			
				|  |  |  |  | 	template<bool isPrevXAvail, bool isPrevYAvail, bool isPrevZAvail> | 
		
	
		
			
				|  |  |  |  | 	void SurfaceExtractor<VolumeType, Controller>::computeBitmaskForCell(const Array2DUint8& pPreviousBitmask, Array2DUint8& pCurrentBitmask) | 
		
	
		
			
				|  |  |  |  | 	{ | 
		
	
		
			
				|  |  |  |  | 		uint8_t iCubeIndex = 0; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		typename VolumeType::VoxelType v000; | 
		
	
		
			
				|  |  |  |  | 		typename VolumeType::VoxelType v100; | 
		
	
		
			
				|  |  |  |  | 		typename VolumeType::VoxelType v010; | 
		
	
		
			
				|  |  |  |  | 		typename VolumeType::VoxelType v110; | 
		
	
		
			
				|  |  |  |  | 		typename VolumeType::VoxelType v001; | 
		
	
		
			
				|  |  |  |  | 		typename VolumeType::VoxelType v101; | 
		
	
		
			
				|  |  |  |  | 		typename VolumeType::VoxelType v011; | 
		
	
		
			
				|  |  |  |  | 		typename VolumeType::VoxelType v111; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		if(isPrevZAvail) | 
		
	
		
			
				|  |  |  |  | 		{ | 
		
	
		
			
				|  |  |  |  | 			if(isPrevYAvail) | 
		
	
		
			
				|  |  |  |  | 			{ | 
		
	
		
			
				|  |  |  |  | 				if(isPrevXAvail) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					v111 = m_sampVolume.peekVoxel1px1py1pz(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//z | 
		
	
		
			
				|  |  |  |  | 					uint8_t iPreviousCubeIndexZ = pPreviousBitmask[uXRegSpace][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexZ >>= 4; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//y | 
		
	
		
			
				|  |  |  |  | 					uint8_t iPreviousCubeIndexY = pCurrentBitmask[uXRegSpace][uYRegSpace-1]; | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexY &= 192; //192 = 128 + 64 | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexY >>= 2; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//x | 
		
	
		
			
				|  |  |  |  | 					uint8_t iPreviousCubeIndexX = pCurrentBitmask[uXRegSpace-1][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexX &= 128; | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexX >>= 1; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128; | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				else //previous X not available | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					v011 = m_sampVolume.peekVoxel0px1py1pz(); | 
		
	
		
			
				|  |  |  |  | 					v111 = m_sampVolume.peekVoxel1px1py1pz(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//z | 
		
	
		
			
				|  |  |  |  | 					uint8_t iPreviousCubeIndexZ = pPreviousBitmask[uXRegSpace][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexZ >>= 4; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//y | 
		
	
		
			
				|  |  |  |  | 					uint8_t iPreviousCubeIndexY = pCurrentBitmask[uXRegSpace][uYRegSpace-1]; | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexY &= 192; //192 = 128 + 64 | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexY >>= 2; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v011) < m_tThreshold) iCubeIndex |= 64; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128; | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 			} | 
		
	
		
			
				|  |  |  |  | 			else //previous Y not available | 
		
	
		
			
				|  |  |  |  | 			{ | 
		
	
		
			
				|  |  |  |  | 				if(isPrevXAvail) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					v101 = m_sampVolume.peekVoxel1px0py1pz(); | 
		
	
		
			
				|  |  |  |  | 					v111 = m_sampVolume.peekVoxel1px1py1pz(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//z | 
		
	
		
			
				|  |  |  |  | 					uint8_t iPreviousCubeIndexZ = pPreviousBitmask[uXRegSpace][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexZ >>= 4; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//x | 
		
	
		
			
				|  |  |  |  | 					uint8_t iPreviousCubeIndexX = pCurrentBitmask[uXRegSpace-1][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexX &= 160; //160 = 128+32 | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexX >>= 1; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v101) < m_tThreshold) iCubeIndex |= 32; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128; | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				else //previous X not available | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					v001 = m_sampVolume.peekVoxel0px0py1pz(); | 
		
	
		
			
				|  |  |  |  | 					v101 = m_sampVolume.peekVoxel1px0py1pz(); | 
		
	
		
			
				|  |  |  |  | 					v011 = m_sampVolume.peekVoxel0px1py1pz(); | 
		
	
		
			
				|  |  |  |  | 					v111 = m_sampVolume.peekVoxel1px1py1pz(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//z | 
		
	
		
			
				|  |  |  |  | 					uint8_t iPreviousCubeIndexZ = pPreviousBitmask[uXRegSpace][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					iCubeIndex = iPreviousCubeIndexZ >> 4; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v001) < m_tThreshold) iCubeIndex |= 16; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v101) < m_tThreshold) iCubeIndex |= 32; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v011) < m_tThreshold) iCubeIndex |= 64; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128; | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 			} | 
		
	
		
			
				|  |  |  |  | 		} | 
		
	
		
			
				|  |  |  |  | 		else //previous Z not available | 
		
	
		
			
				|  |  |  |  | 		{ | 
		
	
		
			
				|  |  |  |  | 			if(isPrevYAvail) | 
		
	
		
			
				|  |  |  |  | 			{ | 
		
	
		
			
				|  |  |  |  | 				if(isPrevXAvail) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					v110 = m_sampVolume.peekVoxel1px1py0pz(); | 
		
	
		
			
				|  |  |  |  | 					v111 = m_sampVolume.peekVoxel1px1py1pz(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//y | 
		
	
		
			
				|  |  |  |  | 					uint8_t iPreviousCubeIndexY = pCurrentBitmask[uXRegSpace][uYRegSpace-1]; | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexY &= 204; //204 = 128+64+8+4 | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexY >>= 2; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//x | 
		
	
		
			
				|  |  |  |  | 					uint8_t iPreviousCubeIndexX = pCurrentBitmask[uXRegSpace-1][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexX &= 170; //170 = 128+32+8+2 | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexX >>= 1; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v110) < m_tThreshold) iCubeIndex |= 8; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128; | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				else //previous X not available | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					v010 = m_sampVolume.peekVoxel0px1py0pz(); | 
		
	
		
			
				|  |  |  |  | 					v110 = m_sampVolume.peekVoxel1px1py0pz(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					v011 = m_sampVolume.peekVoxel0px1py1pz(); | 
		
	
		
			
				|  |  |  |  | 					v111 = m_sampVolume.peekVoxel1px1py1pz(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//y | 
		
	
		
			
				|  |  |  |  | 					uint8_t iPreviousCubeIndexY = pCurrentBitmask[uXRegSpace][uYRegSpace-1]; | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexY &= 204; //204 = 128+64+8+4 | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexY >>= 2; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					iCubeIndex = iPreviousCubeIndexY; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v010) < m_tThreshold) iCubeIndex |= 4; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v110) < m_tThreshold) iCubeIndex |= 8; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v011) < m_tThreshold) iCubeIndex |= 64; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128; | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 			} | 
		
	
		
			
				|  |  |  |  | 			else //previous Y not available | 
		
	
		
			
				|  |  |  |  | 			{ | 
		
	
		
			
				|  |  |  |  | 				if(isPrevXAvail) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					v100 = m_sampVolume.peekVoxel1px0py0pz(); | 
		
	
		
			
				|  |  |  |  | 					v110 = m_sampVolume.peekVoxel1px1py0pz(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					v101 = m_sampVolume.peekVoxel1px0py1pz(); | 
		
	
		
			
				|  |  |  |  | 					v111 = m_sampVolume.peekVoxel1px1py1pz(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//x | 
		
	
		
			
				|  |  |  |  | 					uint8_t iPreviousCubeIndexX = pCurrentBitmask[uXRegSpace-1][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexX &= 170; //170 = 128+32+8+2 | 
		
	
		
			
				|  |  |  |  | 					iPreviousCubeIndexX >>= 1; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					iCubeIndex = iPreviousCubeIndexX; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v100) < m_tThreshold) iCubeIndex |= 2;	 | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v110) < m_tThreshold) iCubeIndex |= 8; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v101) < m_tThreshold) iCubeIndex |= 32; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128; | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				else //previous X not available | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					v000 = m_sampVolume.getVoxel(); | 
		
	
		
			
				|  |  |  |  | 					v100 = m_sampVolume.peekVoxel1px0py0pz(); | 
		
	
		
			
				|  |  |  |  | 					v010 = m_sampVolume.peekVoxel0px1py0pz(); | 
		
	
		
			
				|  |  |  |  | 					v110 = m_sampVolume.peekVoxel1px1py0pz(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					v001 = m_sampVolume.peekVoxel0px0py1pz(); | 
		
	
		
			
				|  |  |  |  | 					v101 = m_sampVolume.peekVoxel1px0py1pz(); | 
		
	
		
			
				|  |  |  |  | 					v011 = m_sampVolume.peekVoxel0px1py1pz(); | 
		
	
		
			
				|  |  |  |  | 					v111 = m_sampVolume.peekVoxel1px1py1pz(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v000) < m_tThreshold) iCubeIndex |= 1; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v100) < m_tThreshold) iCubeIndex |= 2; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v010) < m_tThreshold) iCubeIndex |= 4; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v110) < m_tThreshold) iCubeIndex |= 8; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v001) < m_tThreshold) iCubeIndex |= 16; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v101) < m_tThreshold) iCubeIndex |= 32; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v011) < m_tThreshold) iCubeIndex |= 64; | 
		
	
		
			
				|  |  |  |  | 					if (m_controller.convertToDensity(v111) < m_tThreshold) iCubeIndex |= 128; | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 			} | 
		
	
		
			
				|  |  |  |  | 		} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		//Save the bitmask | 
		
	
		
			
				|  |  |  |  | 		pCurrentBitmask[uXRegSpace][iYVolSpace- m_regSizeInVoxels.getLowerCorner().getY()] = iCubeIndex; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		if(edgeTable[iCubeIndex] != 0) | 
		
	
		
			
				|  |  |  |  | 		{ | 
		
	
		
			
				|  |  |  |  | 			++m_uNoOfOccupiedCells; | 
		
	
		
			
				|  |  |  |  | 		} | 
		
	
		
			
				|  |  |  |  | 	} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 	template<typename VolumeType, typename Controller> | 
		
	
		
			
				|  |  |  |  | 	void SurfaceExtractor<VolumeType, Controller>::generateVerticesForSlice(const Array2DUint8& pCurrentBitmask, | 
		
	
		
			
				|  |  |  |  | 		Array2DInt32& m_pCurrentVertexIndicesX, | 
		
	
		
			
				|  |  |  |  | 		Array2DInt32& m_pCurrentVertexIndicesY, | 
		
	
		
			
				|  |  |  |  | 		Array2DInt32& m_pCurrentVertexIndicesZ) | 
		
	
		
			
				|  |  |  |  | 	{ | 
		
	
		
			
				|  |  |  |  | 		int32_t iZVolSpace = m_regSliceCurrent.getLowerCorner().getZ(); | 
		
	
		
			
				|  |  |  |  | 		const uint32_t uZRegSpace = iZVolSpace - m_regSizeInVoxels.getLowerCorner().getZ(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		//Iterate over each cell in the region | 
		
	
		
			
				|  |  |  |  | 		for(int32_t iYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); iYVolSpace <= m_regSliceCurrent.getUpperCorner().getY(); iYVolSpace++) | 
		
	
		
			
				|  |  |  |  | 		{ | 
		
	
		
			
				|  |  |  |  | 			const uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 			for(int32_t iXVolSpace = m_regSliceCurrent.getLowerCorner().getX(); iXVolSpace <= m_regSliceCurrent.getUpperCorner().getX(); iXVolSpace++) | 
		
	
		
			
				|  |  |  |  | 			{		 | 
		
	
		
			
				|  |  |  |  | 				//Current position | 
		
	
		
			
				|  |  |  |  | 				const uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 				//Determine the index into the edge table which tells us which vertices are inside of the surface | 
		
	
		
			
				|  |  |  |  | 				uint8_t iCubeIndex = pCurrentBitmask[uXRegSpace][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 				/* Cube is entirely in/out of the surface */ | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] == 0) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					continue; | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 				//Check whether the generated vertex will lie on the edge of the region | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 				m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace); | 
		
	
		
			
				|  |  |  |  | 				const typename VolumeType::VoxelType v000 = m_sampVolume.getVoxel(); | 
		
	
		
			
				|  |  |  |  | 				const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 				/* Find the vertices where the surface intersects the cube */ | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 1) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					m_sampVolume.movePositiveX(); | 
		
	
		
			
				|  |  |  |  | 					const typename VolumeType::VoxelType v100 = m_sampVolume.getVoxel(); | 
		
	
		
			
				|  |  |  |  | 					const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v100) - m_controller.convertToDensity(v000)); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()) + fInterp, static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()), static_cast<float>(iZVolSpace - m_regSizeInCells.getLowerCorner().getZ())); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1-fInterp)); | 
		
	
		
			
				|  |  |  |  | 					v3dNormal.normalise(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//Choose one of the two materials to use for the vertex (we don't interpolate as interpolation of | 
		
	
		
			
				|  |  |  |  | 					//material IDs does not make sense). We take the largest, so that if we are working on a material-only | 
		
	
		
			
				|  |  |  |  | 					//volume we get the one which is non-zero. Both materials can be non-zero if our volume has a density component. | 
		
	
		
			
				|  |  |  |  | 					typename SurfaceExtractionController<typename VolumeType::VoxelType>::MaterialType uMaterial000 = m_controller.convertToMaterial(v000); | 
		
	
		
			
				|  |  |  |  | 					typename SurfaceExtractionController<typename VolumeType::VoxelType>::MaterialType uMaterial100 = m_controller.convertToMaterial(v100); | 
		
	
		
			
				|  |  |  |  | 					typename SurfaceExtractionController<typename VolumeType::VoxelType>::MaterialType uMaterial = (std::max)(uMaterial000, uMaterial100); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					PositionMaterialNormal surfaceVertex(v3dPosition, v3dNormal, static_cast<float>(uMaterial)); | 
		
	
		
			
				|  |  |  |  | 					uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex); | 
		
	
		
			
				|  |  |  |  | 					m_pCurrentVertexIndicesX[iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()][iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()] = uLastVertexIndex; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					m_sampVolume.moveNegativeX(); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 8) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					m_sampVolume.movePositiveY(); | 
		
	
		
			
				|  |  |  |  | 					const typename VolumeType::VoxelType v010 = m_sampVolume.getVoxel(); | 
		
	
		
			
				|  |  |  |  | 					const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v010) - m_controller.convertToDensity(v000)); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()) + fInterp, static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerCorner().getZ())); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1-fInterp)); | 
		
	
		
			
				|  |  |  |  | 					v3dNormal.normalise(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//Choose one of the two materials to use for the vertex (we don't interpolate as interpolation of | 
		
	
		
			
				|  |  |  |  | 					//material IDs does not make sense). We take the largest, so that if we are working on a material-only | 
		
	
		
			
				|  |  |  |  | 					//volume we get the one which is non-zero. Both materials can be non-zero if our volume has a density component. | 
		
	
		
			
				|  |  |  |  | 					typename SurfaceExtractionController<typename VolumeType::VoxelType>::MaterialType uMaterial000 = m_controller.convertToMaterial(v000); | 
		
	
		
			
				|  |  |  |  | 					typename SurfaceExtractionController<typename VolumeType::VoxelType>::MaterialType uMaterial010 = m_controller.convertToMaterial(v010); | 
		
	
		
			
				|  |  |  |  | 					typename SurfaceExtractionController<typename VolumeType::VoxelType>::MaterialType uMaterial = (std::max)(uMaterial000, uMaterial010); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					PositionMaterialNormal surfaceVertex(v3dPosition, v3dNormal, static_cast<float>(uMaterial)); | 
		
	
		
			
				|  |  |  |  | 					uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex); | 
		
	
		
			
				|  |  |  |  | 					m_pCurrentVertexIndicesY[iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()][iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()] = uLastVertexIndex; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					m_sampVolume.moveNegativeY(); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 256) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					m_sampVolume.movePositiveZ(); | 
		
	
		
			
				|  |  |  |  | 					const typename VolumeType::VoxelType v001 = m_sampVolume.getVoxel(); | 
		
	
		
			
				|  |  |  |  | 					const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v000)) / static_cast<float>(m_controller.convertToDensity(v001) - m_controller.convertToDensity(v000)); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()), static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerCorner().getZ()) + fInterp); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1-fInterp)); | 
		
	
		
			
				|  |  |  |  | 					v3dNormal.normalise(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					//Choose one of the two materials to use for the vertex (we don't interpolate as interpolation of | 
		
	
		
			
				|  |  |  |  | 					//material IDs does not make sense). We take the largest, so that if we are working on a material-only | 
		
	
		
			
				|  |  |  |  | 					//volume we get the one which is non-zero. Both materials can be non-zero if our volume has a density component. | 
		
	
		
			
				|  |  |  |  | 					typename SurfaceExtractionController<typename VolumeType::VoxelType>::MaterialType uMaterial000 = m_controller.convertToMaterial(v000); | 
		
	
		
			
				|  |  |  |  | 					typename SurfaceExtractionController<typename VolumeType::VoxelType>::MaterialType uMaterial001 = m_controller.convertToMaterial(v001); | 
		
	
		
			
				|  |  |  |  | 					typename SurfaceExtractionController<typename VolumeType::VoxelType>::MaterialType uMaterial = (std::max)(uMaterial000, uMaterial001); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					PositionMaterialNormal surfaceVertex(v3dPosition, v3dNormal, static_cast<float>(uMaterial)); | 
		
	
		
			
				|  |  |  |  | 					uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex); | 
		
	
		
			
				|  |  |  |  | 					m_pCurrentVertexIndicesZ[iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()][iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()] = uLastVertexIndex; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					m_sampVolume.moveNegativeZ(); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 			}//For each cell | 
		
	
		
			
				|  |  |  |  | 		} | 
		
	
		
			
				|  |  |  |  | 	} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 	template<typename VolumeType, typename Controller> | 
		
	
		
			
				|  |  |  |  | 	void SurfaceExtractor<VolumeType, Controller>::generateIndicesForSlice(const Array2DUint8& pPreviousBitmask, | 
		
	
		
			
				|  |  |  |  | 		const Array2DInt32& m_pPreviousVertexIndicesX, | 
		
	
		
			
				|  |  |  |  | 		const Array2DInt32& m_pPreviousVertexIndicesY, | 
		
	
		
			
				|  |  |  |  | 		const Array2DInt32& m_pPreviousVertexIndicesZ, | 
		
	
		
			
				|  |  |  |  | 		const Array2DInt32& m_pCurrentVertexIndicesX, | 
		
	
		
			
				|  |  |  |  | 		const Array2DInt32& m_pCurrentVertexIndicesY) | 
		
	
		
			
				|  |  |  |  | 	{ | 
		
	
		
			
				|  |  |  |  | 		int32_t indlist[12]; | 
		
	
		
			
				|  |  |  |  | 		for(int i = 0; i < 12; i++) | 
		
	
		
			
				|  |  |  |  | 		{ | 
		
	
		
			
				|  |  |  |  | 			indlist[i] = -1; | 
		
	
		
			
				|  |  |  |  | 		} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 		for(int32_t iYVolSpace = m_regSlicePrevious.getLowerCorner().getY(); iYVolSpace <= m_regSizeInCells.getUpperCorner().getY(); iYVolSpace++) | 
		
	
		
			
				|  |  |  |  | 		{ | 
		
	
		
			
				|  |  |  |  | 			for(int32_t iXVolSpace = m_regSlicePrevious.getLowerCorner().getX(); iXVolSpace <= m_regSizeInCells.getUpperCorner().getX(); iXVolSpace++) | 
		
	
		
			
				|  |  |  |  | 			{		 | 
		
	
		
			
				|  |  |  |  | 				int32_t iZVolSpace = m_regSlicePrevious.getLowerCorner().getZ(); | 
		
	
		
			
				|  |  |  |  | 				m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace);	 | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 				//Current position | 
		
	
		
			
				|  |  |  |  | 				const uint32_t uXRegSpace = m_sampVolume.getPosition().getX() - m_regSizeInVoxels.getLowerCorner().getX(); | 
		
	
		
			
				|  |  |  |  | 				const uint32_t uYRegSpace = m_sampVolume.getPosition().getY() - m_regSizeInVoxels.getLowerCorner().getY(); | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 				//Determine the index into the edge table which tells us which vertices are inside of the surface | 
		
	
		
			
				|  |  |  |  | 				uint8_t iCubeIndex = pPreviousBitmask[uXRegSpace][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 				/* Cube is entirely in/out of the surface */ | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] == 0) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					continue; | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 				/* Find the vertices where the surface intersects the cube */ | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 1) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					indlist[0] = m_pPreviousVertexIndicesX[uXRegSpace][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					//assert(indlist[0] != -1); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 2) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					indlist[1] = m_pPreviousVertexIndicesY[uXRegSpace+1][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					//assert(indlist[1] != -1); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 4) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					indlist[2] = m_pPreviousVertexIndicesX[uXRegSpace][uYRegSpace+1]; | 
		
	
		
			
				|  |  |  |  | 					//assert(indlist[2] != -1); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 8) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					indlist[3] = m_pPreviousVertexIndicesY[uXRegSpace][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					//assert(indlist[3] != -1); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 16) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					indlist[4] = m_pCurrentVertexIndicesX[uXRegSpace][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					//assert(indlist[4] != -1); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 32) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					indlist[5] = m_pCurrentVertexIndicesY[uXRegSpace+1][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					//assert(indlist[5] != -1); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 64) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					indlist[6] = m_pCurrentVertexIndicesX[uXRegSpace][uYRegSpace+1]; | 
		
	
		
			
				|  |  |  |  | 					//assert(indlist[6] != -1); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 128) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					indlist[7] = m_pCurrentVertexIndicesY[uXRegSpace][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					//assert(indlist[7] != -1); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 256) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					indlist[8] = m_pPreviousVertexIndicesZ[uXRegSpace][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					//assert(indlist[8] != -1); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 512) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					indlist[9] = m_pPreviousVertexIndicesZ[uXRegSpace+1][uYRegSpace]; | 
		
	
		
			
				|  |  |  |  | 					//assert(indlist[9] != -1); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 1024) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					indlist[10] = m_pPreviousVertexIndicesZ[uXRegSpace+1][uYRegSpace+1]; | 
		
	
		
			
				|  |  |  |  | 					//assert(indlist[10] != -1); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  | 				if (edgeTable[iCubeIndex] & 2048) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					indlist[11] = m_pPreviousVertexIndicesZ[uXRegSpace][uYRegSpace+1]; | 
		
	
		
			
				|  |  |  |  | 					//assert(indlist[11] != -1); | 
		
	
		
			
				|  |  |  |  | 				} | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 				for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) | 
		
	
		
			
				|  |  |  |  | 				{ | 
		
	
		
			
				|  |  |  |  | 					int32_t ind0 = indlist[triTable[iCubeIndex][i  ]]; | 
		
	
		
			
				|  |  |  |  | 					int32_t ind1 = indlist[triTable[iCubeIndex][i+1]]; | 
		
	
		
			
				|  |  |  |  | 					int32_t ind2 = indlist[triTable[iCubeIndex][i+2]]; | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | 					if((ind0 != -1) && (ind1 != -1) && (ind2 != -1)) | 
		
	
		
			
				|  |  |  |  | 					{ | 
		
	
		
			
				|  |  |  |  | 						m_meshCurrent->addTriangle(ind0, ind1, ind2); | 
		
	
		
			
				|  |  |  |  | 					} | 
		
	
		
			
				|  |  |  |  | 				}//For each triangle | 
		
	
		
			
				|  |  |  |  | 			}//For each cell | 
		
	
		
			
				|  |  |  |  | 		} | 
		
	
		
			
				|  |  |  |  | 	} | 
		
	
		
			
				|  |  |  |  | } |