Revert "Split the code which generates vertices and indices for a single cell into a separate function."
This reverts commit 2fa291d16f13adf039dc4fa636bfccde52377989.
This commit is contained in:
parent
942bb37981
commit
96e747d0c3
@ -48,192 +48,6 @@ namespace PolyVox
|
||||
);
|
||||
}
|
||||
|
||||
template< typename VolumeType, typename MeshType, typename ControllerType >
|
||||
void generateMeshForCell(Region& region, MeshType* result, ControllerType& controller, typename VolumeType::Sampler& sampler, Array<2, Vector3DInt32>& pIndices, Array<2, Vector3DInt32>& pPreviousIndices, uint8_t iCubeIndex, uint32_t uXRegSpace, uint32_t uYRegSpace, uint32_t uZRegSpace, typename ControllerType::DensityType tThreshold)
|
||||
{
|
||||
auto v111 = sampler.getVoxel();
|
||||
auto v111Density = controller.convertToDensity(v111);
|
||||
const Vector3DFloat n000 = computeCentralDifferenceGradient(sampler, controller);
|
||||
|
||||
uint16_t uEdge = edgeTable[iCubeIndex];
|
||||
/* Find the vertices where the surface intersects the cube */
|
||||
if ((uEdge & 64) && (uXRegSpace > 0))
|
||||
{
|
||||
sampler.moveNegativeX();
|
||||
typename VolumeType::VoxelType v011 = sampler.getVoxel();
|
||||
auto v011Density = controller.convertToDensity(v011);
|
||||
const float fInterp = static_cast<float>(tThreshold - v011Density) / static_cast<float>(v111Density - v011Density);
|
||||
|
||||
// Compute the position
|
||||
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace - 1) + fInterp, static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace));
|
||||
|
||||
// Compute the normal
|
||||
const Vector3DFloat n100 = computeCentralDifferenceGradient(sampler, controller);
|
||||
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1 - fInterp));
|
||||
|
||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||
if (v3dNormal.lengthSquared() > 0.000001f)
|
||||
{
|
||||
v3dNormal.normalise();
|
||||
}
|
||||
|
||||
// Allow the controller to decide how the material should be derived from the voxels.
|
||||
const typename VolumeType::VoxelType uMaterial = controller.blendMaterials(v011, v111, fInterp);
|
||||
|
||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||
surfaceVertex.data = uMaterial;
|
||||
|
||||
const uint32_t uLastVertexIndex = result->addVertex(surfaceVertex);
|
||||
pIndices(uXRegSpace, uYRegSpace).setX(uLastVertexIndex);
|
||||
|
||||
sampler.movePositiveX();
|
||||
}
|
||||
if ((uEdge & 32) && (uYRegSpace > 0))
|
||||
{
|
||||
sampler.moveNegativeY();
|
||||
typename VolumeType::VoxelType v101 = sampler.getVoxel();
|
||||
auto v101Density = controller.convertToDensity(v101);
|
||||
const float fInterp = static_cast<float>(tThreshold - v101Density) / static_cast<float>(v111Density - v101Density);
|
||||
|
||||
// Compute the position
|
||||
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace - 1) + fInterp, static_cast<float>(uZRegSpace));
|
||||
|
||||
// Compute the normal
|
||||
const Vector3DFloat n010 = computeCentralDifferenceGradient(sampler, controller);
|
||||
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1 - fInterp));
|
||||
|
||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||
if (v3dNormal.lengthSquared() > 0.000001f)
|
||||
{
|
||||
v3dNormal.normalise();
|
||||
}
|
||||
|
||||
// Allow the controller to decide how the material should be derived from the voxels.
|
||||
const typename VolumeType::VoxelType uMaterial = controller.blendMaterials(v101, v111, fInterp);
|
||||
|
||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||
surfaceVertex.data = uMaterial;
|
||||
|
||||
uint32_t uLastVertexIndex = result->addVertex(surfaceVertex);
|
||||
pIndices(uXRegSpace, uYRegSpace).setY(uLastVertexIndex);
|
||||
|
||||
sampler.movePositiveY();
|
||||
}
|
||||
if ((uEdge & 1024) && (uZRegSpace > 0))
|
||||
{
|
||||
sampler.moveNegativeZ();
|
||||
typename VolumeType::VoxelType v110 = sampler.getVoxel();
|
||||
auto v110Density = controller.convertToDensity(v110);
|
||||
const float fInterp = static_cast<float>(tThreshold - v110Density) / static_cast<float>(v111Density - v110Density);
|
||||
|
||||
// Compute the position
|
||||
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace - 1) + fInterp);
|
||||
|
||||
// Compute the normal
|
||||
const Vector3DFloat n001 = computeCentralDifferenceGradient(sampler, controller);
|
||||
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1 - fInterp));
|
||||
|
||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||
if (v3dNormal.lengthSquared() > 0.000001f)
|
||||
{
|
||||
v3dNormal.normalise();
|
||||
}
|
||||
|
||||
// Allow the controller to decide how the material should be derived from the voxels.
|
||||
const typename VolumeType::VoxelType uMaterial = controller.blendMaterials(v110, v111, fInterp);
|
||||
|
||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||
surfaceVertex.data = uMaterial;
|
||||
|
||||
const uint32_t uLastVertexIndex = result->addVertex(surfaceVertex);
|
||||
pIndices(uXRegSpace, uYRegSpace).setZ(uLastVertexIndex);
|
||||
|
||||
sampler.movePositiveZ();
|
||||
}
|
||||
|
||||
// Now output the indices. For the first row, column or slice there aren't
|
||||
// any (the region size in cells is one less than the region size in voxels)
|
||||
if ((uXRegSpace != 0) && (uYRegSpace != 0) && (uZRegSpace != 0))
|
||||
{
|
||||
|
||||
int32_t indlist[12];
|
||||
|
||||
/* Find the vertices where the surface intersects the cube */
|
||||
if (uEdge & 1)
|
||||
{
|
||||
indlist[0] = pPreviousIndices(uXRegSpace, uYRegSpace - 1).getX();
|
||||
}
|
||||
if (uEdge & 2)
|
||||
{
|
||||
indlist[1] = pPreviousIndices(uXRegSpace, uYRegSpace).getY();
|
||||
}
|
||||
if (uEdge & 4)
|
||||
{
|
||||
indlist[2] = pPreviousIndices(uXRegSpace, uYRegSpace).getX();
|
||||
}
|
||||
if (uEdge & 8)
|
||||
{
|
||||
indlist[3] = pPreviousIndices(uXRegSpace - 1, uYRegSpace).getY();
|
||||
}
|
||||
if (uEdge & 16)
|
||||
{
|
||||
indlist[4] = pIndices(uXRegSpace, uYRegSpace - 1).getX();
|
||||
}
|
||||
if (uEdge & 32)
|
||||
{
|
||||
indlist[5] = pIndices(uXRegSpace, uYRegSpace).getY();
|
||||
}
|
||||
if (uEdge & 64)
|
||||
{
|
||||
indlist[6] = pIndices(uXRegSpace, uYRegSpace).getX();
|
||||
}
|
||||
if (uEdge & 128)
|
||||
{
|
||||
indlist[7] = pIndices(uXRegSpace - 1, uYRegSpace).getY();
|
||||
}
|
||||
if (uEdge & 256)
|
||||
{
|
||||
indlist[8] = pIndices(uXRegSpace - 1, uYRegSpace - 1).getZ();
|
||||
}
|
||||
if (uEdge & 512)
|
||||
{
|
||||
indlist[9] = pIndices(uXRegSpace, uYRegSpace - 1).getZ();
|
||||
}
|
||||
if (uEdge & 1024)
|
||||
{
|
||||
indlist[10] = pIndices(uXRegSpace, uYRegSpace).getZ();
|
||||
}
|
||||
if (uEdge & 2048)
|
||||
{
|
||||
indlist[11] = pIndices(uXRegSpace - 1, uYRegSpace).getZ();
|
||||
}
|
||||
|
||||
for (int i = 0; triTable[iCubeIndex][i] != -1; i += 3)
|
||||
{
|
||||
const int32_t ind0 = indlist[triTable[iCubeIndex][i]];
|
||||
const int32_t ind1 = indlist[triTable[iCubeIndex][i + 1]];
|
||||
const int32_t ind2 = indlist[triTable[iCubeIndex][i + 2]];
|
||||
|
||||
if ((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
|
||||
{
|
||||
result->addTriangle(ind0, ind1, ind2);
|
||||
}
|
||||
} // For each triangle
|
||||
}
|
||||
}
|
||||
|
||||
template< typename VolumeType, typename MeshType, typename ControllerType >
|
||||
void extractMarchingCubesMeshCustom(VolumeType* volData, Region region, MeshType* result, ControllerType controller)
|
||||
{
|
||||
@ -315,16 +129,188 @@ namespace PolyVox
|
||||
pPreviousSliceBitmask(uXRegSpace, uYRegSpace) = iCubeIndex;
|
||||
|
||||
/* Cube is entirely in/out of the surface */
|
||||
if (edgeTable[iCubeIndex] != 0)
|
||||
uint16_t uEdge = edgeTable[iCubeIndex];
|
||||
if (uEdge != 0)
|
||||
{
|
||||
// This is a rather ugly function call and appears to have some cost compared to inlining the code.
|
||||
// As a result the case when a cell contains vertices/indices is slightly slower, but the (more common)
|
||||
// case where a cell is empty is slightly faster, probably because the main loop is a lot more compact.
|
||||
// Having a seperate function will also make it easier to profile in the future and see whether empty or
|
||||
// occupied cells are really the bottleneck. The large number of parameters is messy though, so it
|
||||
// would be nice to reduce these if we can work out how.
|
||||
generateMeshForCell<VolumeType, MeshType, ControllerType>(region, result, controller,
|
||||
sampler, pIndices, pPreviousIndices, iCubeIndex, uXRegSpace, uYRegSpace, uZRegSpace, tThreshold);
|
||||
auto v111Density = controller.convertToDensity(v111);
|
||||
const Vector3DFloat n000 = computeCentralDifferenceGradient(sampler, controller);
|
||||
|
||||
/* Find the vertices where the surface intersects the cube */
|
||||
if ((uEdge & 64) && (uXRegSpace > 0))
|
||||
{
|
||||
sampler.moveNegativeX();
|
||||
typename VolumeType::VoxelType v011 = sampler.getVoxel();
|
||||
auto v011Density = controller.convertToDensity(v011);
|
||||
const float fInterp = static_cast<float>(tThreshold - v011Density) / static_cast<float>(v111Density - v011Density);
|
||||
|
||||
// Compute the position
|
||||
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace - 1) + fInterp, static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace));
|
||||
|
||||
// Compute the normal
|
||||
const Vector3DFloat n100 = computeCentralDifferenceGradient(sampler, controller);
|
||||
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1 - fInterp));
|
||||
|
||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||
if (v3dNormal.lengthSquared() > 0.000001f)
|
||||
{
|
||||
v3dNormal.normalise();
|
||||
}
|
||||
|
||||
// Allow the controller to decide how the material should be derived from the voxels.
|
||||
const typename VolumeType::VoxelType uMaterial = controller.blendMaterials(v011, v111, fInterp);
|
||||
|
||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||
surfaceVertex.data = uMaterial;
|
||||
|
||||
const uint32_t uLastVertexIndex = result->addVertex(surfaceVertex);
|
||||
pIndices(uXRegSpace, uYRegSpace).setX(uLastVertexIndex);
|
||||
|
||||
sampler.movePositiveX();
|
||||
}
|
||||
if ((uEdge & 32) && (uYRegSpace > 0))
|
||||
{
|
||||
sampler.moveNegativeY();
|
||||
typename VolumeType::VoxelType v101 = sampler.getVoxel();
|
||||
auto v101Density = controller.convertToDensity(v101);
|
||||
const float fInterp = static_cast<float>(tThreshold - v101Density) / static_cast<float>(v111Density - v101Density);
|
||||
|
||||
// Compute the position
|
||||
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace - 1) + fInterp, static_cast<float>(uZRegSpace));
|
||||
|
||||
// Compute the normal
|
||||
const Vector3DFloat n010 = computeCentralDifferenceGradient(sampler, controller);
|
||||
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1 - fInterp));
|
||||
|
||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||
if (v3dNormal.lengthSquared() > 0.000001f)
|
||||
{
|
||||
v3dNormal.normalise();
|
||||
}
|
||||
|
||||
// Allow the controller to decide how the material should be derived from the voxels.
|
||||
const typename VolumeType::VoxelType uMaterial = controller.blendMaterials(v101, v111, fInterp);
|
||||
|
||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||
surfaceVertex.data = uMaterial;
|
||||
|
||||
uint32_t uLastVertexIndex = result->addVertex(surfaceVertex);
|
||||
pIndices(uXRegSpace, uYRegSpace).setY(uLastVertexIndex);
|
||||
|
||||
sampler.movePositiveY();
|
||||
}
|
||||
if ((uEdge & 1024) && (uZRegSpace > 0))
|
||||
{
|
||||
sampler.moveNegativeZ();
|
||||
typename VolumeType::VoxelType v110 = sampler.getVoxel();
|
||||
auto v110Density = controller.convertToDensity(v110);
|
||||
const float fInterp = static_cast<float>(tThreshold - v110Density) / static_cast<float>(v111Density - v110Density);
|
||||
|
||||
// Compute the position
|
||||
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace - 1) + fInterp);
|
||||
|
||||
// Compute the normal
|
||||
const Vector3DFloat n001 = computeCentralDifferenceGradient(sampler, controller);
|
||||
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1 - fInterp));
|
||||
|
||||
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
|
||||
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
|
||||
if (v3dNormal.lengthSquared() > 0.000001f)
|
||||
{
|
||||
v3dNormal.normalise();
|
||||
}
|
||||
|
||||
// Allow the controller to decide how the material should be derived from the voxels.
|
||||
const typename VolumeType::VoxelType uMaterial = controller.blendMaterials(v110, v111, fInterp);
|
||||
|
||||
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
|
||||
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
|
||||
surfaceVertex.encodedPosition = v3dScaledPosition;
|
||||
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
|
||||
surfaceVertex.data = uMaterial;
|
||||
|
||||
const uint32_t uLastVertexIndex = result->addVertex(surfaceVertex);
|
||||
pIndices(uXRegSpace, uYRegSpace).setZ(uLastVertexIndex);
|
||||
|
||||
sampler.movePositiveZ();
|
||||
}
|
||||
|
||||
// Now output the indices. For the first row, column or slice there aren't
|
||||
// any (the region size in cells is one less than the region size in voxels)
|
||||
if ((uXRegSpace != 0) && (uYRegSpace != 0) && (uZRegSpace != 0))
|
||||
{
|
||||
|
||||
int32_t indlist[12];
|
||||
|
||||
/* Find the vertices where the surface intersects the cube */
|
||||
if (uEdge & 1)
|
||||
{
|
||||
indlist[0] = pPreviousIndices(uXRegSpace, uYRegSpace - 1).getX();
|
||||
}
|
||||
if (uEdge & 2)
|
||||
{
|
||||
indlist[1] = pPreviousIndices(uXRegSpace, uYRegSpace).getY();
|
||||
}
|
||||
if (uEdge & 4)
|
||||
{
|
||||
indlist[2] = pPreviousIndices(uXRegSpace, uYRegSpace).getX();
|
||||
}
|
||||
if (uEdge & 8)
|
||||
{
|
||||
indlist[3] = pPreviousIndices(uXRegSpace - 1, uYRegSpace).getY();
|
||||
}
|
||||
if (uEdge & 16)
|
||||
{
|
||||
indlist[4] = pIndices(uXRegSpace, uYRegSpace - 1).getX();
|
||||
}
|
||||
if (uEdge & 32)
|
||||
{
|
||||
indlist[5] = pIndices(uXRegSpace, uYRegSpace).getY();
|
||||
}
|
||||
if (uEdge & 64)
|
||||
{
|
||||
indlist[6] = pIndices(uXRegSpace, uYRegSpace).getX();
|
||||
}
|
||||
if (uEdge & 128)
|
||||
{
|
||||
indlist[7] = pIndices(uXRegSpace - 1, uYRegSpace).getY();
|
||||
}
|
||||
if (uEdge & 256)
|
||||
{
|
||||
indlist[8] = pIndices(uXRegSpace - 1, uYRegSpace - 1).getZ();
|
||||
}
|
||||
if (uEdge & 512)
|
||||
{
|
||||
indlist[9] = pIndices(uXRegSpace, uYRegSpace - 1).getZ();
|
||||
}
|
||||
if (uEdge & 1024)
|
||||
{
|
||||
indlist[10] = pIndices(uXRegSpace, uYRegSpace).getZ();
|
||||
}
|
||||
if (uEdge & 2048)
|
||||
{
|
||||
indlist[11] = pIndices(uXRegSpace - 1, uYRegSpace).getZ();
|
||||
}
|
||||
|
||||
for (int i = 0; triTable[iCubeIndex][i] != -1; i += 3)
|
||||
{
|
||||
const int32_t ind0 = indlist[triTable[iCubeIndex][i]];
|
||||
const int32_t ind1 = indlist[triTable[iCubeIndex][i + 1]];
|
||||
const int32_t ind2 = indlist[triTable[iCubeIndex][i + 2]];
|
||||
|
||||
if ((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
|
||||
{
|
||||
result->addTriangle(ind0, ind1, ind2);
|
||||
}
|
||||
} // For each triangle
|
||||
}
|
||||
} // For each cell
|
||||
sampler.movePositiveX();
|
||||
} // For X
|
||||
|
Loading…
x
Reference in New Issue
Block a user