Avoid setting the sampler position every iteration.

This commit is contained in:
David Williams 2015-05-23 17:45:16 +02:00
parent 5b84c5a9a5
commit cee15a145f

View File

@ -81,12 +81,12 @@ namespace PolyVox
{
const uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerY();
m_sampVolume.setPosition(m_regSizeInVoxels.getLowerX(), iYVolSpace, iZVolSpace);
for (int32_t iXVolSpace = m_regSizeInVoxels.getLowerX(); iXVolSpace <= m_regSizeInVoxels.getUpperX(); iXVolSpace++)
{
const uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerX();
m_sampVolume.setPosition(iXVolSpace, iYVolSpace, iZVolSpace);
typename VolumeType::VoxelType v000;
typename VolumeType::VoxelType v100;
typename VolumeType::VoxelType v010;
@ -286,197 +286,195 @@ namespace PolyVox
}
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
if (edgeTable[iCubeIndex] != 0)
{
continue;
}
// These three might not have been sampled, as v111 is the only one we sample every iteration.
v110 = m_sampVolume.peekVoxel0px0py1nz();
v101 = m_sampVolume.peekVoxel0px1ny0pz();
v011 = m_sampVolume.peekVoxel1nx0py0pz();
// These three might not have been sampled, as v111 is the only one we sample every iteration.
v110 = m_sampVolume.peekVoxel0px0py1nz();
v101 = m_sampVolume.peekVoxel0px1ny0pz();
v011 = m_sampVolume.peekVoxel1nx0py0pz();
const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume);
const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume);
/* Find the vertices where the surface intersects the cube */
if ((edgeTable[iCubeIndex] & 64) && (uXRegSpace > 0))
{
m_sampVolume.moveNegativeX();
POLYVOX_ASSERT(v011 != v111, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v011)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v011));
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace - 1) + fInterp, static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace));
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
/* Find the vertices where the surface intersects the cube */
if ((edgeTable[iCubeIndex] & 64) && (uXRegSpace > 0))
{
v3dNormal.normalise();
m_sampVolume.moveNegativeX();
POLYVOX_ASSERT(v011 != v111, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v011)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v011));
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace - 1) + fInterp, static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace));
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v011, v111, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
m_sampVolume.movePositiveX();
}
if ((edgeTable[iCubeIndex] & 32) && (uYRegSpace > 0))
{
m_sampVolume.moveNegativeY();
POLYVOX_ASSERT(v101 != v111, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v101)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v101));
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace - 1) + fInterp, static_cast<float>(uZRegSpace));
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v101, v111, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
m_sampVolume.movePositiveY();
}
if ((edgeTable[iCubeIndex] & 1024) && (uZRegSpace > 0))
{
m_sampVolume.moveNegativeZ();
POLYVOX_ASSERT(v110 != v111, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v110)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v110));
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace - 1) + fInterp);
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v110, v111, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesZ(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
m_sampVolume.movePositiveZ();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v011, v111, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
m_sampVolume.movePositiveX();
}
if ((edgeTable[iCubeIndex] & 32) && (uYRegSpace > 0))
{
m_sampVolume.moveNegativeY();
POLYVOX_ASSERT(v101 != v111, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v101)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v101));
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace - 1) + fInterp, static_cast<float>(uZRegSpace));
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
// Now output the indices. For the first row, column or slice there aren't
// any (the region size in cells is one less than the region size in voxels)
if ((isPrevXAvail) && (isPrevYAvail) && (isPrevZAvail))
{
v3dNormal.normalise();
int32_t indlist[12];
m_sampVolume.setPosition(iXVolSpace, iYVolSpace, iZVolSpace);
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] != 0)
{
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
indlist[0] = pIndicesX(uXRegSpace, uYRegSpace - 1, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 2)
{
indlist[1] = pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 4)
{
indlist[2] = pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 8)
{
indlist[3] = pIndicesY(uXRegSpace - 1, uYRegSpace, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 16)
{
indlist[4] = pIndicesX(uXRegSpace, uYRegSpace - 1, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 32)
{
indlist[5] = pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 64)
{
indlist[6] = pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 128)
{
indlist[7] = pIndicesY(uXRegSpace - 1, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 256)
{
indlist[8] = pIndicesZ(uXRegSpace - 1, uYRegSpace - 1, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 512)
{
indlist[9] = pIndicesZ(uXRegSpace, uYRegSpace - 1, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 1024)
{
indlist[10] = pIndicesZ(uXRegSpace, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 2048)
{
indlist[11] = pIndicesZ(uXRegSpace - 1, uYRegSpace, uZRegSpace);
}
for (int i = 0; triTable[iCubeIndex][i] != -1; i += 3)
{
const int32_t ind0 = indlist[triTable[iCubeIndex][i]];
const int32_t ind1 = indlist[triTable[iCubeIndex][i + 1]];
const int32_t ind2 = indlist[triTable[iCubeIndex][i + 2]];
if ((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
{
m_meshCurrent->addTriangle(ind0, ind1, ind2);
}
}//For each triangle
}
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v101, v111, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
m_sampVolume.movePositiveY();
}
if ((edgeTable[iCubeIndex] & 1024) && (uZRegSpace > 0))
{
m_sampVolume.moveNegativeZ();
POLYVOX_ASSERT(v110 != v111, "Attempting to insert vertex between two voxels with the same value");
const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume);
const float fInterp = static_cast<float>(m_tThreshold - m_controller.convertToDensity(v110)) / static_cast<float>(m_controller.convertToDensity(v111) - m_controller.convertToDensity(v110));
const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace - 1) + fInterp);
const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1 - fInterp));
// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
if (v3dNormal.lengthSquared() > 0.000001f)
{
v3dNormal.normalise();
}
// Allow the controller to decide how the material should be derived from the voxels.
const typename VolumeType::VoxelType uMaterial = m_controller.blendMaterials(v110, v111, fInterp);
MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
surfaceVertex.encodedPosition = v3dScaledPosition;
surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
surfaceVertex.data = uMaterial;
const uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
pIndicesZ(uXRegSpace, uYRegSpace, uZRegSpace) = uLastVertexIndex;
m_sampVolume.movePositiveZ();
}
// Now output the indices. For the first row, column or slice there aren't
// any (the region size in cells is one less than the region size in voxels)
if ((!isPrevXAvail) || (!isPrevYAvail) || (!isPrevZAvail))
{
continue;
}
int32_t indlist[12];
m_sampVolume.setPosition(iXVolSpace, iYVolSpace, iZVolSpace);
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
{
continue;
}
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
indlist[0] = pIndicesX(uXRegSpace, uYRegSpace - 1, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 2)
{
indlist[1] = pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 4)
{
indlist[2] = pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 8)
{
indlist[3] = pIndicesY(uXRegSpace - 1, uYRegSpace, uZRegSpace - 1);
}
if (edgeTable[iCubeIndex] & 16)
{
indlist[4] = pIndicesX(uXRegSpace, uYRegSpace - 1, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 32)
{
indlist[5] = pIndicesY(uXRegSpace, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 64)
{
indlist[6] = pIndicesX(uXRegSpace, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 128)
{
indlist[7] = pIndicesY(uXRegSpace - 1, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 256)
{
indlist[8] = pIndicesZ(uXRegSpace - 1, uYRegSpace - 1, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 512)
{
indlist[9] = pIndicesZ(uXRegSpace, uYRegSpace - 1, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 1024)
{
indlist[10] = pIndicesZ(uXRegSpace, uYRegSpace, uZRegSpace);
}
if (edgeTable[iCubeIndex] & 2048)
{
indlist[11] = pIndicesZ(uXRegSpace - 1, uYRegSpace, uZRegSpace);
}
for (int i = 0; triTable[iCubeIndex][i] != -1; i += 3)
{
const int32_t ind0 = indlist[triTable[iCubeIndex][i]];
const int32_t ind1 = indlist[triTable[iCubeIndex][i + 1]];
const int32_t ind2 = indlist[triTable[iCubeIndex][i + 2]];
if ((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
{
m_meshCurrent->addTriangle(ind0, ind1, ind2);
}
}//For each triangle
}//For each cell
}//For each cell
m_sampVolume.movePositiveX();
}
}
pPreviousBitmask.swap(pCurrentBitmask);