Applied default Visual Studio formatting to most files. This is a quick fix for the tabs vs spaces issue that messes up the formatting in any editor (esp. Linux) which handles tabs/spaces differently to Visual Studio. Some parts of the formatting look a bit worse but overall it should be better (or at least more consistent).

I didn't apply the changes to a few macro-heavy files as Visual Studio removes all indentation from macros, whereas the indentation can be handy to see nesting.
This commit is contained in:
David Williams
2015-12-26 23:11:27 +00:00
parent b3ca051878
commit e89a55d154
58 changed files with 1117 additions and 1114 deletions

View File

@ -47,14 +47,14 @@ void createSphereInVolume(RawVolume<uint8_t>& volData, float fRadius)
for (int x = 0; x < volData.getWidth(); x++)
{
//Store our current position as a vector...
Vector3DFloat v3dCurrentPos(x,y,z);
Vector3DFloat v3dCurrentPos(x, y, z);
//And compute how far the current position is from the center of the volume
float fDistToCenter = (v3dCurrentPos - v3dVolCenter).length();
uint8_t uVoxelValue = 0;
//If the current voxel is less than 'radius' units from the center then we make it solid.
if(fDistToCenter <= fRadius)
if (fDistToCenter <= fRadius)
{
//Our new voxel value
uVoxelValue = 255;

View File

@ -47,14 +47,14 @@ void createSphereInVolume(RawVolume<uint8_t>& volData, float fRadius)
for (int x = 0; x < volData.getWidth(); x++)
{
//Store our current position as a vector...
Vector3DFloat v3dCurrentPos(x,y,z);
Vector3DFloat v3dCurrentPos(x, y, z);
//And compute how far the current position is from the center of the volume
float fDistToCenter = (v3dCurrentPos - v3dVolCenter).length();
uint8_t uVoxelValue = 0;
//If the current voxel is less than 'radius' units from the center then we make it solid.
if(fDistToCenter <= fRadius)
if (fDistToCenter <= fRadius)
{
//Our new voxel value
uVoxelValue = 255;

View File

@ -41,15 +41,15 @@ void createSphereInVolume(RawVolume<MaterialDensityPair88>& volData, float fRadi
for (int x = 0; x < volData.getWidth(); x++)
{
//Store our current position as a vector...
Vector3DInt32 v3dCurrentPos(x,y,z);
Vector3DInt32 v3dCurrentPos(x, y, z);
//And compute how far the current position is from the center of the volume
double fDistToCenter = (v3dCurrentPos - v3dVolCenter).length();
//If the current voxel is less than 'radius' units from the center
//then we make it solid, otherwise we make it empty space.
if(fDistToCenter <= fRadius)
if (fDistToCenter <= fRadius)
{
volData.setVoxel(x,y,z, MaterialDensityPair88(uValue, uValue > 0 ? MaterialDensityPair88::getMaxDensity() : MaterialDensityPair88::getMinDensity()));
volData.setVoxel(x, y, z, MaterialDensityPair88(uValue, uValue > 0 ? MaterialDensityPair88::getMaxDensity() : MaterialDensityPair88::getMinDensity()));
}
}
}
@ -65,9 +65,9 @@ void createCubeInVolume(RawVolume<MaterialDensityPair88>& volData, Vector3DInt32
{
for (int y = lowerCorner.getY(); y <= upperCorner.getY(); y++)
{
for (int x = lowerCorner.getX() ; x <= upperCorner.getX(); x++)
for (int x = lowerCorner.getX(); x <= upperCorner.getX(); x++)
{
volData.setVoxel(x,y,z, MaterialDensityPair88(uValue, uValue > 0 ? maxDen : minDen));
volData.setVoxel(x, y, z, MaterialDensityPair88(uValue, uValue > 0 ? maxDen : minDen));
}
}
}

View File

@ -36,18 +36,18 @@ float Perlin::noise1(float arg)
vec[0] = arg;
if (mStart)
{
srand(mSeed);
{
srand(mSeed);
mStart = false;
init();
}
setup(0, bx0,bx1, rx0,rx1);
setup(0, bx0, bx1, rx0, rx1);
sx = s_curve(rx0);
u = rx0 * g1[ p[ bx0 ] ];
v = rx1 * g1[ p[ bx1 ] ];
u = rx0 * g1[p[bx0]];
v = rx1 * g1[p[bx1]];
return lerp(sx, u, v);
}
@ -59,14 +59,14 @@ float Perlin::noise2(float vec[2])
int i, j;
if (mStart)
{
srand(mSeed);
{
srand(mSeed);
mStart = false;
init();
}
setup(0,bx0,bx1,rx0,rx1);
setup(1,by0,by1,ry0,ry1);
setup(0, bx0, bx1, rx0, rx1);
setup(1, by0, by1, ry0, ry1);
i = p[bx0];
j = p[bx1];
@ -79,18 +79,18 @@ float Perlin::noise2(float vec[2])
sx = s_curve(rx0);
sy = s_curve(ry0);
#define at2(rx,ry) ( rx * q[0] + ry * q[1] )
#define at2(rx,ry) ( rx * q[0] + ry * q[1] )
q = g2[b00];
u = at2(rx0,ry0);
u = at2(rx0, ry0);
q = g2[b10];
v = at2(rx1,ry0);
v = at2(rx1, ry0);
a = lerp(sx, u, v);
q = g2[b01];
u = at2(rx0,ry1);
u = at2(rx0, ry1);
q = g2[b11];
v = at2(rx1,ry1);
v = at2(rx1, ry1);
b = lerp(sx, u, v);
return lerp(sy, a, b);
@ -103,46 +103,46 @@ float Perlin::noise3(float vec[3])
int i, j;
if (mStart)
{
srand(mSeed);
{
srand(mSeed);
mStart = false;
init();
}
setup(0, bx0,bx1, rx0,rx1);
setup(1, by0,by1, ry0,ry1);
setup(2, bz0,bz1, rz0,rz1);
setup(0, bx0, bx1, rx0, rx1);
setup(1, by0, by1, ry0, ry1);
setup(2, bz0, bz1, rz0, rz1);
i = p[ bx0 ];
j = p[ bx1 ];
i = p[bx0];
j = p[bx1];
b00 = p[ i + by0 ];
b10 = p[ j + by0 ];
b01 = p[ i + by1 ];
b11 = p[ j + by1 ];
b00 = p[i + by0];
b10 = p[j + by0];
b01 = p[i + by1];
b11 = p[j + by1];
t = s_curve(rx0);
t = s_curve(rx0);
sy = s_curve(ry0);
sz = s_curve(rz0);
#define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] )
#define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] )
q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0);
q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0);
q = g3[b00 + bz0]; u = at3(rx0, ry0, rz0);
q = g3[b10 + bz0]; v = at3(rx1, ry0, rz0);
a = lerp(t, u, v);
q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0);
q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0);
q = g3[b01 + bz0]; u = at3(rx0, ry1, rz0);
q = g3[b11 + bz0]; v = at3(rx1, ry1, rz0);
b = lerp(t, u, v);
c = lerp(sy, a, b);
q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1);
q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1);
q = g3[b00 + bz1]; u = at3(rx0, ry0, rz1);
q = g3[b10 + bz1]; v = at3(rx1, ry0, rz1);
a = lerp(t, u, v);
q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1);
q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1);
q = g3[b01 + bz1]; u = at3(rx0, ry1, rz1);
q = g3[b11 + bz1]; v = at3(rx1, ry1, rz1);
b = lerp(t, u, v);
d = lerp(sy, a, b);
@ -155,7 +155,7 @@ void Perlin::normalize2(float v[2])
float s;
s = (float)sqrt(v[0] * v[0] + v[1] * v[1]);
s = 1.0f/s;
s = 1.0f / s;
v[0] = v[0] * s;
v[1] = v[1] * s;
}
@ -165,7 +165,7 @@ void Perlin::normalize3(float v[3])
float s;
s = (float)sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
s = 1.0f/s;
s = 1.0f / s;
v[0] = v[0] * s;
v[1] = v[1] * s;
@ -176,32 +176,32 @@ void Perlin::init(void)
{
int i, j, k;
for (i = 0 ; i < B ; i++)
{
for (i = 0; i < B; i++)
{
p[i] = i;
g1[i] = (float)((rand() % (B + B)) - B) / B;
for (j = 0 ; j < 2 ; j++)
for (j = 0; j < 2; j++)
g2[i][j] = (float)((rand() % (B + B)) - B) / B;
normalize2(g2[i]);
for (j = 0 ; j < 3 ; j++)
for (j = 0; j < 3; j++)
g3[i][j] = (float)((rand() % (B + B)) - B) / B;
normalize3(g3[i]);
}
while (--i)
{
{
k = p[i];
p[i] = p[j = rand() % B];
p[j] = k;
}
for (i = 0 ; i < B + 2 ; i++)
{
for (i = 0; i < B + 2; i++)
{
p[B + i] = p[i];
g1[B + i] = g1[i];
for (j = 0 ; j < 2 ; j++)
for (j = 0; j < 2; j++)
g2[B + i][j] = g2[i][j];
for (j = 0 ; j < 3 ; j++)
for (j = 0; j < 3; j++)
g3[B + i][j] = g3[i][j];
}
@ -210,19 +210,19 @@ void Perlin::init(void)
float Perlin::perlin_noise_2D(float vec[2])
{
int terms = mOctaves;
int terms = mOctaves;
float result = 0.0f;
float amp = mAmplitude;
float amp = mAmplitude;
vec[0]*=mFrequency;
vec[1]*=mFrequency;
vec[0] *= mFrequency;
vec[1] *= mFrequency;
for( int i=0; i<terms; i++ )
for (int i = 0; i < terms; i++)
{
result += noise2(vec)*amp;
vec[0] *= 2.0f;
vec[1] *= 2.0f;
amp*=0.5f;
amp *= 0.5f;
}
@ -231,21 +231,21 @@ float Perlin::perlin_noise_2D(float vec[2])
float Perlin::perlin_noise_3D(float vec[3])
{
int terms = mOctaves;
int terms = mOctaves;
float result = 0.0f;
float amp = mAmplitude;
float amp = mAmplitude;
vec[0]*=mFrequency;
vec[1]*=mFrequency;
vec[2]*=mFrequency;
vec[0] *= mFrequency;
vec[1] *= mFrequency;
vec[2] *= mFrequency;
for( int i=0; i<terms; i++ )
for (int i = 0; i < terms; i++)
{
result += noise3(vec)*amp;
vec[0] *= 2.0f;
vec[1] *= 2.0f;
vec[2] *= 2.0f;
amp*=0.5f;
amp *= 0.5f;
}
@ -254,12 +254,12 @@ float Perlin::perlin_noise_3D(float vec[3])
Perlin::Perlin(int octaves,float freq,float amp,int seed)
Perlin::Perlin(int octaves, float freq, float amp, int seed)
{
mOctaves = octaves;
mFrequency = freq;
mAmplitude = amp;
mSeed = seed;
mStart = true;
mOctaves = octaves;
mFrequency = freq;
mAmplitude = amp;
mSeed = seed;
mStart = true;
}

View File

@ -53,29 +53,30 @@ public:
virtual void pageIn(const PolyVox::Region& region, PagedVolume<MaterialDensityPair44>::Chunk* pChunk)
{
Perlin perlin(2,2,1,234);
Perlin perlin(2, 2, 1, 234);
for(int x = region.getLowerX(); x <= region.getUpperX(); x++)
for (int x = region.getLowerX(); x <= region.getUpperX(); x++)
{
for(int y = region.getLowerY(); y <= region.getUpperY(); y++)
for (int y = region.getLowerY(); y <= region.getUpperY(); y++)
{
float perlinVal = perlin.Get(x / static_cast<float>(255-1), y / static_cast<float>(255-1));
float perlinVal = perlin.Get(x / static_cast<float>(255 - 1), y / static_cast<float>(255 - 1));
perlinVal += 1.0f;
perlinVal *= 0.5f;
perlinVal *= 255;
for(int z = region.getLowerZ(); z <= region.getUpperZ(); z++)
for (int z = region.getLowerZ(); z <= region.getUpperZ(); z++)
{
MaterialDensityPair44 voxel;
if(z < perlinVal)
if (z < perlinVal)
{
const int xpos = 50;
const int zpos = 100;
if((x-xpos)*(x-xpos) + (z-zpos)*(z-zpos) < 200)
if ((x - xpos)*(x - xpos) + (z - zpos)*(z - zpos) < 200)
{
// tunnel
voxel.setMaterial(0);
voxel.setDensity(MaterialDensityPair44::getMinDensity());
} else
}
else
{
// solid
voxel.setMaterial(245);
@ -150,4 +151,4 @@ int main(int argc, char *argv[])
// Run the message pump.
return app.exec();
}
}

View File

@ -48,11 +48,11 @@ void createSphereInVolume(RawVolume<uint8_t>& volData, float fRadius)
for (int x = 0; x < volData.getWidth(); x++)
{
//Store our current position as a vector...
Vector3DFloat v3dCurrentPos(x,y,z);
Vector3DFloat v3dCurrentPos(x, y, z);
//And compute how far the current position is from the center of the volume
float fDistToCenter = (v3dCurrentPos - v3dVolCenter).length();
if(fDistToCenter <= fRadius)
if (fDistToCenter <= fRadius)
{
//Our new density value
uint8_t uDensity = std::numeric_limits<uint8_t>::max();

View File

@ -10,13 +10,13 @@
////////////////////////////////////////////////////////////////////////////////
template <typename QOpenGLFunctionsType>
OpenGLWidget<QOpenGLFunctionsType>::OpenGLWidget(QWidget *parent)
:QGLWidget(parent)
:QGLWidget(parent)
{
}
template <typename QOpenGLFunctionsType>
const QMatrix4x4& OpenGLWidget<QOpenGLFunctionsType>::viewMatrix()
{
{
return mViewMatrix;
}
@ -45,22 +45,22 @@ void OpenGLWidget<QOpenGLFunctionsType>::initializeGL()
std::cerr << "Could not initialize OpenGL functions" << std::endl;
exit(EXIT_FAILURE);
}
//Print out some information about the OpenGL implementation.
std::cout << "OpenGL Implementation Details:" << std::endl;
if(this->glGetString(GL_VENDOR))
std::cout << "\tGL_VENDOR: " << this->glGetString(GL_VENDOR) << std::endl;
if(this->glGetString(GL_RENDERER))
std::cout << "\tGL_RENDERER: " << this->glGetString(GL_RENDERER) << std::endl;
if(this->glGetString(GL_VERSION))
std::cout << "\tGL_VERSION: " << this->glGetString(GL_VERSION) << std::endl;
if(this->glGetString(GL_SHADING_LANGUAGE_VERSION))
std::cout << "\tGL_SHADING_LANGUAGE_VERSION: " << this->glGetString(GL_SHADING_LANGUAGE_VERSION) << std::endl;
if (this->glGetString(GL_VENDOR))
std::cout << "\tGL_VENDOR: " << this->glGetString(GL_VENDOR) << std::endl;
if (this->glGetString(GL_RENDERER))
std::cout << "\tGL_RENDERER: " << this->glGetString(GL_RENDERER) << std::endl;
if (this->glGetString(GL_VERSION))
std::cout << "\tGL_VERSION: " << this->glGetString(GL_VERSION) << std::endl;
if (this->glGetString(GL_SHADING_LANGUAGE_VERSION))
std::cout << "\tGL_SHADING_LANGUAGE_VERSION: " << this->glGetString(GL_SHADING_LANGUAGE_VERSION) << std::endl;
//Set up the clear colour
this->glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
this->glClearDepth(1.0f);
this->glEnable(GL_DEPTH_TEST);
this->glDepthMask(GL_TRUE);
this->glDepthFunc(GL_LEQUAL);
@ -81,11 +81,11 @@ void OpenGLWidget<QOpenGLFunctionsType>::resizeGL(int w, int h)
{
//Setup the viewport
this->glViewport(0, 0, w, h);
auto aspectRatio = w / (float)h;
float zNear = 1.0;
float zFar = 1000.0;
mProjectionMatrix.setToIdentity();
mProjectionMatrix.perspective(mCameraFOV, aspectRatio, zNear, zFar);
}
@ -145,12 +145,12 @@ void OpenGLWidget<QOpenGLFunctionsType>::paintGL()
this->glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderOneFrame();
// Check for errors.
GLenum errCode = this->glGetError();
if(errCode != GL_NO_ERROR)
if (errCode != GL_NO_ERROR)
{
std::cerr << "OpenGL Error: " << errCode << std::endl;
std::cerr << "OpenGL Error: " << errCode << std::endl;
}
}