Applied default Visual Studio formatting to most files. This is a quick fix for the tabs vs spaces issue that messes up the formatting in any editor (esp. Linux) which handles tabs/spaces differently to Visual Studio. Some parts of the formatting look a bit worse but overall it should be better (or at least more consistent).

I didn't apply the changes to a few macro-heavy files as Visual Studio removes all indentation from macros, whereas the indentation can be handy to see nesting.
This commit is contained in:
David Williams 2015-12-26 23:11:27 +00:00
parent b3ca051878
commit e89a55d154
58 changed files with 1117 additions and 1114 deletions

View File

@ -47,14 +47,14 @@ void createSphereInVolume(RawVolume<uint8_t>& volData, float fRadius)
for (int x = 0; x < volData.getWidth(); x++)
{
//Store our current position as a vector...
Vector3DFloat v3dCurrentPos(x,y,z);
Vector3DFloat v3dCurrentPos(x, y, z);
//And compute how far the current position is from the center of the volume
float fDistToCenter = (v3dCurrentPos - v3dVolCenter).length();
uint8_t uVoxelValue = 0;
//If the current voxel is less than 'radius' units from the center then we make it solid.
if(fDistToCenter <= fRadius)
if (fDistToCenter <= fRadius)
{
//Our new voxel value
uVoxelValue = 255;

View File

@ -47,14 +47,14 @@ void createSphereInVolume(RawVolume<uint8_t>& volData, float fRadius)
for (int x = 0; x < volData.getWidth(); x++)
{
//Store our current position as a vector...
Vector3DFloat v3dCurrentPos(x,y,z);
Vector3DFloat v3dCurrentPos(x, y, z);
//And compute how far the current position is from the center of the volume
float fDistToCenter = (v3dCurrentPos - v3dVolCenter).length();
uint8_t uVoxelValue = 0;
//If the current voxel is less than 'radius' units from the center then we make it solid.
if(fDistToCenter <= fRadius)
if (fDistToCenter <= fRadius)
{
//Our new voxel value
uVoxelValue = 255;

View File

@ -41,15 +41,15 @@ void createSphereInVolume(RawVolume<MaterialDensityPair88>& volData, float fRadi
for (int x = 0; x < volData.getWidth(); x++)
{
//Store our current position as a vector...
Vector3DInt32 v3dCurrentPos(x,y,z);
Vector3DInt32 v3dCurrentPos(x, y, z);
//And compute how far the current position is from the center of the volume
double fDistToCenter = (v3dCurrentPos - v3dVolCenter).length();
//If the current voxel is less than 'radius' units from the center
//then we make it solid, otherwise we make it empty space.
if(fDistToCenter <= fRadius)
if (fDistToCenter <= fRadius)
{
volData.setVoxel(x,y,z, MaterialDensityPair88(uValue, uValue > 0 ? MaterialDensityPair88::getMaxDensity() : MaterialDensityPair88::getMinDensity()));
volData.setVoxel(x, y, z, MaterialDensityPair88(uValue, uValue > 0 ? MaterialDensityPair88::getMaxDensity() : MaterialDensityPair88::getMinDensity()));
}
}
}
@ -65,9 +65,9 @@ void createCubeInVolume(RawVolume<MaterialDensityPair88>& volData, Vector3DInt32
{
for (int y = lowerCorner.getY(); y <= upperCorner.getY(); y++)
{
for (int x = lowerCorner.getX() ; x <= upperCorner.getX(); x++)
for (int x = lowerCorner.getX(); x <= upperCorner.getX(); x++)
{
volData.setVoxel(x,y,z, MaterialDensityPair88(uValue, uValue > 0 ? maxDen : minDen));
volData.setVoxel(x, y, z, MaterialDensityPair88(uValue, uValue > 0 ? maxDen : minDen));
}
}
}

View File

@ -36,18 +36,18 @@ float Perlin::noise1(float arg)
vec[0] = arg;
if (mStart)
{
srand(mSeed);
{
srand(mSeed);
mStart = false;
init();
}
setup(0, bx0,bx1, rx0,rx1);
setup(0, bx0, bx1, rx0, rx1);
sx = s_curve(rx0);
u = rx0 * g1[ p[ bx0 ] ];
v = rx1 * g1[ p[ bx1 ] ];
u = rx0 * g1[p[bx0]];
v = rx1 * g1[p[bx1]];
return lerp(sx, u, v);
}
@ -59,14 +59,14 @@ float Perlin::noise2(float vec[2])
int i, j;
if (mStart)
{
srand(mSeed);
{
srand(mSeed);
mStart = false;
init();
}
setup(0,bx0,bx1,rx0,rx1);
setup(1,by0,by1,ry0,ry1);
setup(0, bx0, bx1, rx0, rx1);
setup(1, by0, by1, ry0, ry1);
i = p[bx0];
j = p[bx1];
@ -79,18 +79,18 @@ float Perlin::noise2(float vec[2])
sx = s_curve(rx0);
sy = s_curve(ry0);
#define at2(rx,ry) ( rx * q[0] + ry * q[1] )
#define at2(rx,ry) ( rx * q[0] + ry * q[1] )
q = g2[b00];
u = at2(rx0,ry0);
u = at2(rx0, ry0);
q = g2[b10];
v = at2(rx1,ry0);
v = at2(rx1, ry0);
a = lerp(sx, u, v);
q = g2[b01];
u = at2(rx0,ry1);
u = at2(rx0, ry1);
q = g2[b11];
v = at2(rx1,ry1);
v = at2(rx1, ry1);
b = lerp(sx, u, v);
return lerp(sy, a, b);
@ -103,46 +103,46 @@ float Perlin::noise3(float vec[3])
int i, j;
if (mStart)
{
srand(mSeed);
{
srand(mSeed);
mStart = false;
init();
}
setup(0, bx0,bx1, rx0,rx1);
setup(1, by0,by1, ry0,ry1);
setup(2, bz0,bz1, rz0,rz1);
setup(0, bx0, bx1, rx0, rx1);
setup(1, by0, by1, ry0, ry1);
setup(2, bz0, bz1, rz0, rz1);
i = p[ bx0 ];
j = p[ bx1 ];
i = p[bx0];
j = p[bx1];
b00 = p[ i + by0 ];
b10 = p[ j + by0 ];
b01 = p[ i + by1 ];
b11 = p[ j + by1 ];
b00 = p[i + by0];
b10 = p[j + by0];
b01 = p[i + by1];
b11 = p[j + by1];
t = s_curve(rx0);
t = s_curve(rx0);
sy = s_curve(ry0);
sz = s_curve(rz0);
#define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] )
#define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] )
q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0);
q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0);
q = g3[b00 + bz0]; u = at3(rx0, ry0, rz0);
q = g3[b10 + bz0]; v = at3(rx1, ry0, rz0);
a = lerp(t, u, v);
q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0);
q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0);
q = g3[b01 + bz0]; u = at3(rx0, ry1, rz0);
q = g3[b11 + bz0]; v = at3(rx1, ry1, rz0);
b = lerp(t, u, v);
c = lerp(sy, a, b);
q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1);
q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1);
q = g3[b00 + bz1]; u = at3(rx0, ry0, rz1);
q = g3[b10 + bz1]; v = at3(rx1, ry0, rz1);
a = lerp(t, u, v);
q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1);
q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1);
q = g3[b01 + bz1]; u = at3(rx0, ry1, rz1);
q = g3[b11 + bz1]; v = at3(rx1, ry1, rz1);
b = lerp(t, u, v);
d = lerp(sy, a, b);
@ -155,7 +155,7 @@ void Perlin::normalize2(float v[2])
float s;
s = (float)sqrt(v[0] * v[0] + v[1] * v[1]);
s = 1.0f/s;
s = 1.0f / s;
v[0] = v[0] * s;
v[1] = v[1] * s;
}
@ -165,7 +165,7 @@ void Perlin::normalize3(float v[3])
float s;
s = (float)sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
s = 1.0f/s;
s = 1.0f / s;
v[0] = v[0] * s;
v[1] = v[1] * s;
@ -176,32 +176,32 @@ void Perlin::init(void)
{
int i, j, k;
for (i = 0 ; i < B ; i++)
{
for (i = 0; i < B; i++)
{
p[i] = i;
g1[i] = (float)((rand() % (B + B)) - B) / B;
for (j = 0 ; j < 2 ; j++)
for (j = 0; j < 2; j++)
g2[i][j] = (float)((rand() % (B + B)) - B) / B;
normalize2(g2[i]);
for (j = 0 ; j < 3 ; j++)
for (j = 0; j < 3; j++)
g3[i][j] = (float)((rand() % (B + B)) - B) / B;
normalize3(g3[i]);
}
while (--i)
{
{
k = p[i];
p[i] = p[j = rand() % B];
p[j] = k;
}
for (i = 0 ; i < B + 2 ; i++)
{
for (i = 0; i < B + 2; i++)
{
p[B + i] = p[i];
g1[B + i] = g1[i];
for (j = 0 ; j < 2 ; j++)
for (j = 0; j < 2; j++)
g2[B + i][j] = g2[i][j];
for (j = 0 ; j < 3 ; j++)
for (j = 0; j < 3; j++)
g3[B + i][j] = g3[i][j];
}
@ -210,19 +210,19 @@ void Perlin::init(void)
float Perlin::perlin_noise_2D(float vec[2])
{
int terms = mOctaves;
int terms = mOctaves;
float result = 0.0f;
float amp = mAmplitude;
float amp = mAmplitude;
vec[0]*=mFrequency;
vec[1]*=mFrequency;
vec[0] *= mFrequency;
vec[1] *= mFrequency;
for( int i=0; i<terms; i++ )
for (int i = 0; i < terms; i++)
{
result += noise2(vec)*amp;
vec[0] *= 2.0f;
vec[1] *= 2.0f;
amp*=0.5f;
amp *= 0.5f;
}
@ -231,21 +231,21 @@ float Perlin::perlin_noise_2D(float vec[2])
float Perlin::perlin_noise_3D(float vec[3])
{
int terms = mOctaves;
int terms = mOctaves;
float result = 0.0f;
float amp = mAmplitude;
float amp = mAmplitude;
vec[0]*=mFrequency;
vec[1]*=mFrequency;
vec[2]*=mFrequency;
vec[0] *= mFrequency;
vec[1] *= mFrequency;
vec[2] *= mFrequency;
for( int i=0; i<terms; i++ )
for (int i = 0; i < terms; i++)
{
result += noise3(vec)*amp;
vec[0] *= 2.0f;
vec[1] *= 2.0f;
vec[2] *= 2.0f;
amp*=0.5f;
amp *= 0.5f;
}
@ -254,12 +254,12 @@ float Perlin::perlin_noise_3D(float vec[3])
Perlin::Perlin(int octaves,float freq,float amp,int seed)
Perlin::Perlin(int octaves, float freq, float amp, int seed)
{
mOctaves = octaves;
mFrequency = freq;
mAmplitude = amp;
mSeed = seed;
mStart = true;
mOctaves = octaves;
mFrequency = freq;
mAmplitude = amp;
mSeed = seed;
mStart = true;
}

View File

@ -53,29 +53,30 @@ public:
virtual void pageIn(const PolyVox::Region& region, PagedVolume<MaterialDensityPair44>::Chunk* pChunk)
{
Perlin perlin(2,2,1,234);
Perlin perlin(2, 2, 1, 234);
for(int x = region.getLowerX(); x <= region.getUpperX(); x++)
for (int x = region.getLowerX(); x <= region.getUpperX(); x++)
{
for(int y = region.getLowerY(); y <= region.getUpperY(); y++)
for (int y = region.getLowerY(); y <= region.getUpperY(); y++)
{
float perlinVal = perlin.Get(x / static_cast<float>(255-1), y / static_cast<float>(255-1));
float perlinVal = perlin.Get(x / static_cast<float>(255 - 1), y / static_cast<float>(255 - 1));
perlinVal += 1.0f;
perlinVal *= 0.5f;
perlinVal *= 255;
for(int z = region.getLowerZ(); z <= region.getUpperZ(); z++)
for (int z = region.getLowerZ(); z <= region.getUpperZ(); z++)
{
MaterialDensityPair44 voxel;
if(z < perlinVal)
if (z < perlinVal)
{
const int xpos = 50;
const int zpos = 100;
if((x-xpos)*(x-xpos) + (z-zpos)*(z-zpos) < 200)
if ((x - xpos)*(x - xpos) + (z - zpos)*(z - zpos) < 200)
{
// tunnel
voxel.setMaterial(0);
voxel.setDensity(MaterialDensityPair44::getMinDensity());
} else
}
else
{
// solid
voxel.setMaterial(245);
@ -150,4 +151,4 @@ int main(int argc, char *argv[])
// Run the message pump.
return app.exec();
}
}

View File

@ -48,11 +48,11 @@ void createSphereInVolume(RawVolume<uint8_t>& volData, float fRadius)
for (int x = 0; x < volData.getWidth(); x++)
{
//Store our current position as a vector...
Vector3DFloat v3dCurrentPos(x,y,z);
Vector3DFloat v3dCurrentPos(x, y, z);
//And compute how far the current position is from the center of the volume
float fDistToCenter = (v3dCurrentPos - v3dVolCenter).length();
if(fDistToCenter <= fRadius)
if (fDistToCenter <= fRadius)
{
//Our new density value
uint8_t uDensity = std::numeric_limits<uint8_t>::max();

View File

@ -10,13 +10,13 @@
////////////////////////////////////////////////////////////////////////////////
template <typename QOpenGLFunctionsType>
OpenGLWidget<QOpenGLFunctionsType>::OpenGLWidget(QWidget *parent)
:QGLWidget(parent)
:QGLWidget(parent)
{
}
template <typename QOpenGLFunctionsType>
const QMatrix4x4& OpenGLWidget<QOpenGLFunctionsType>::viewMatrix()
{
{
return mViewMatrix;
}
@ -45,22 +45,22 @@ void OpenGLWidget<QOpenGLFunctionsType>::initializeGL()
std::cerr << "Could not initialize OpenGL functions" << std::endl;
exit(EXIT_FAILURE);
}
//Print out some information about the OpenGL implementation.
std::cout << "OpenGL Implementation Details:" << std::endl;
if(this->glGetString(GL_VENDOR))
std::cout << "\tGL_VENDOR: " << this->glGetString(GL_VENDOR) << std::endl;
if(this->glGetString(GL_RENDERER))
std::cout << "\tGL_RENDERER: " << this->glGetString(GL_RENDERER) << std::endl;
if(this->glGetString(GL_VERSION))
std::cout << "\tGL_VERSION: " << this->glGetString(GL_VERSION) << std::endl;
if(this->glGetString(GL_SHADING_LANGUAGE_VERSION))
std::cout << "\tGL_SHADING_LANGUAGE_VERSION: " << this->glGetString(GL_SHADING_LANGUAGE_VERSION) << std::endl;
if (this->glGetString(GL_VENDOR))
std::cout << "\tGL_VENDOR: " << this->glGetString(GL_VENDOR) << std::endl;
if (this->glGetString(GL_RENDERER))
std::cout << "\tGL_RENDERER: " << this->glGetString(GL_RENDERER) << std::endl;
if (this->glGetString(GL_VERSION))
std::cout << "\tGL_VERSION: " << this->glGetString(GL_VERSION) << std::endl;
if (this->glGetString(GL_SHADING_LANGUAGE_VERSION))
std::cout << "\tGL_SHADING_LANGUAGE_VERSION: " << this->glGetString(GL_SHADING_LANGUAGE_VERSION) << std::endl;
//Set up the clear colour
this->glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
this->glClearDepth(1.0f);
this->glEnable(GL_DEPTH_TEST);
this->glDepthMask(GL_TRUE);
this->glDepthFunc(GL_LEQUAL);
@ -81,11 +81,11 @@ void OpenGLWidget<QOpenGLFunctionsType>::resizeGL(int w, int h)
{
//Setup the viewport
this->glViewport(0, 0, w, h);
auto aspectRatio = w / (float)h;
float zNear = 1.0;
float zFar = 1000.0;
mProjectionMatrix.setToIdentity();
mProjectionMatrix.perspective(mCameraFOV, aspectRatio, zNear, zFar);
}
@ -145,12 +145,12 @@ void OpenGLWidget<QOpenGLFunctionsType>::paintGL()
this->glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderOneFrame();
// Check for errors.
GLenum errCode = this->glGetError();
if(errCode != GL_NO_ERROR)
if (errCode != GL_NO_ERROR)
{
std::cerr << "OpenGL Error: " << errCode << std::endl;
std::cerr << "OpenGL Error: " << errCode << std::endl;
}
}

View File

@ -97,7 +97,7 @@ namespace PolyVox
{
public:
AStarPathfinderParams
(
(
VolumeType* volData,
const Vector3DInt32& v3dStart,
const Vector3DInt32& v3dEnd,
@ -105,18 +105,18 @@ namespace PolyVox
float fHBias = 1.0,
uint32_t uMaxNoOfNodes = 10000,
Connectivity requiredConnectivity = TwentySixConnected,
std::function<bool (const VolumeType*, const Vector3DInt32&)> funcIsVoxelValidForPath = &aStarDefaultVoxelValidator,
std::function<void (float)> funcProgressCallback = nullptr
)
std::function<bool(const VolumeType*, const Vector3DInt32&)> funcIsVoxelValidForPath = &aStarDefaultVoxelValidator,
std::function<void(float)> funcProgressCallback = nullptr
)
:volume(volData)
,start(v3dStart)
,end(v3dEnd)
,result(listResult)
,connectivity(requiredConnectivity)
,hBias(fHBias)
,maxNumberOfNodes(uMaxNoOfNodes)
,isVoxelValidForPath(funcIsVoxelValidForPath)
,progressCallback(funcProgressCallback)
, start(v3dStart)
, end(v3dEnd)
, result(listResult)
, connectivity(requiredConnectivity)
, hBias(fHBias)
, maxNumberOfNodes(uMaxNoOfNodes)
, isVoxelValidForPath(funcIsVoxelValidForPath)
, progressCallback(funcProgressCallback)
{
}
@ -125,7 +125,7 @@ namespace PolyVox
/// The start point for the pathfinding algorithm.
Vector3DInt32 start;
/// The end point for the pathfinding algorithm.
Vector3DInt32 end;
@ -160,14 +160,14 @@ namespace PolyVox
/// you could check to ensure that the voxel above is empty and the voxel below is solid.
///
/// \sa aStarDefaultVoxelValidator
std::function<bool (const VolumeType*, const Vector3DInt32&)> isVoxelValidForPath;
std::function<bool(const VolumeType*, const Vector3DInt32&)> isVoxelValidForPath;
/// This function is called by the AStarPathfinder to report on its progress in getting to
/// the goal. The progress is reported by computing the distance from the closest node found
/// so far to the end node, and comparing this with the distance from the start node to the
/// end node. This progress value is guarenteed to never decrease, but it may stop increasing
///for short periods of time. It may even stop increasing altogether if a path cannot be found.
std::function<void (float)> progressCallback;
std::function<void(float)> progressCallback;
};
/// The AStarPathfinder compute a path from one point in the volume to another.
@ -218,7 +218,7 @@ namespace PolyVox
//The current node
AllNodesContainer::iterator current;
float m_fProgress;
AStarPathfinderParams<VolumeType> m_params;

View File

@ -35,7 +35,7 @@ namespace PolyVox
bool aStarDefaultVoxelValidator(const VolumeType* volData, const Vector3DInt32& v3dPos)
{
//Voxels are considered valid candidates for the path if they are inside the volume...
if(volData->getEnclosingRegion().containsPoint(v3dPos) == false)
if (volData->getEnclosingRegion().containsPoint(v3dPos) == false)
{
return false;
}
@ -83,12 +83,12 @@ namespace PolyVox
float fDistStartToEnd = (endNode->position - startNode->position).length();
m_fProgress = 0.0f;
if(m_params.progressCallback)
if (m_params.progressCallback)
{
m_params.progressCallback(m_fProgress);
}
while((openNodes.empty() == false) && (openNodes.getFirst() != endNode))
while ((openNodes.empty() == false) && (openNodes.getFirst() != endNode))
{
//Move the first node from open to closed.
current = openNodes.getFirst();
@ -96,13 +96,13 @@ namespace PolyVox
closedNodes.insert(current);
//Update the user on our progress
if(m_params.progressCallback)
if (m_params.progressCallback)
{
const float fMinProgresIncreament = 0.001f;
float fDistCurrentToEnd = (endNode->position - current->position).length();
float fDistNormalised = fDistCurrentToEnd / fDistStartToEnd;
float fProgress = 1.0f - fDistNormalised;
if(fProgress >= m_fProgress + fMinProgresIncreament)
if (fProgress >= m_fProgress + fMinProgresIncreament)
{
m_fProgress = fProgress;
m_params.progressCallback(m_fProgress);
@ -116,7 +116,7 @@ namespace PolyVox
//Process the neighbours. Note the deliberate lack of 'break'
//statements, larger connectivities include smaller ones.
switch(m_params.connectivity)
switch (m_params.connectivity)
{
case TwentySixConnected:
processNeighbour(current->position + arrayPathfinderCorners[0], current->gVal + fCornerCost);
@ -129,16 +129,16 @@ namespace PolyVox
processNeighbour(current->position + arrayPathfinderCorners[7], current->gVal + fCornerCost);
case EighteenConnected:
processNeighbour(current->position + arrayPathfinderEdges[ 0], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 1], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 2], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 3], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 4], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 5], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 6], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 7], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 8], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[ 9], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[0], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[1], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[2], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[3], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[4], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[5], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[6], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[7], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[8], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[9], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[10], current->gVal + fEdgeCost);
processNeighbour(current->position + arrayPathfinderEdges[11], current->gVal + fEdgeCost);
@ -151,7 +151,7 @@ namespace PolyVox
processNeighbour(current->position + arrayPathfinderFaces[5], current->gVal + fFaceCost);
}
if(allNodes.size() > m_params.maxNumberOfNodes)
if (allNodes.size() > m_params.maxNumberOfNodes)
{
//We've reached the specified maximum number
//of nodes. Just give up on the search.
@ -159,7 +159,7 @@ namespace PolyVox
}
}
if((openNodes.empty()) || (openNodes.getFirst() != endNode))
if ((openNodes.empty()) || (openNodes.getFirst() != endNode))
{
//In this case we failed to find a valid path.
POLYVOX_THROW(std::runtime_error, "No path found");
@ -172,14 +172,14 @@ namespace PolyVox
//custom sort operator for the set which we know only uses the position to sort. Hence we can safely
//modify other properties of the object while it is in the set.
Node* n = const_cast<Node*>(&(*endNode));
while(n != 0)
while (n != 0)
{
m_params.result->push_front(n->position);
n = n->parent;
}
}
if(m_params.progressCallback)
if (m_params.progressCallback)
{
m_params.progressCallback(1.0f);
}
@ -189,7 +189,7 @@ namespace PolyVox
void AStarPathfinder<VolumeType>::processNeighbour(const Vector3DInt32& neighbourPos, float neighbourGVal)
{
bool bIsVoxelValidForPath = m_params.isVoxelValidForPath(m_params.volume, neighbourPos);
if(!bIsVoxelValidForPath)
if (!bIsVoxelValidForPath)
{
return;
}
@ -199,16 +199,16 @@ namespace PolyVox
std::pair<AllNodesContainer::iterator, bool> insertResult = allNodes.insert(Node(neighbourPos.getX(), neighbourPos.getY(), neighbourPos.getZ()));
AllNodesContainer::iterator neighbour = insertResult.first;
if(insertResult.second == true) //New node, compute h.
if (insertResult.second == true) //New node, compute h.
{
Node* tempNeighbour = const_cast<Node*>(&(*neighbour));
tempNeighbour -> hVal = computeH(neighbour->position, m_params.end);
tempNeighbour->hVal = computeH(neighbour->position, m_params.end);
}
OpenNodesContainer::iterator openIter = openNodes.find(neighbour);
if(openIter != openNodes.end())
if (openIter != openNodes.end())
{
if(cost < neighbour->gVal)
if (cost < neighbour->gVal)
{
openNodes.remove(openIter);
openIter = openNodes.end();
@ -217,9 +217,9 @@ namespace PolyVox
//TODO - Nodes could keep track of if they are in open or closed? And a pointer to where they are?
ClosedNodesContainer::iterator closedIter = closedNodes.find(neighbour);
if(closedIter != closedNodes.end())
if (closedIter != closedNodes.end())
{
if(cost < neighbour->gVal)
if (cost < neighbour->gVal)
{
//Probably shouldn't happen?
closedNodes.remove(closedIter);
@ -227,7 +227,7 @@ namespace PolyVox
}
}
if((openIter == openNodes.end()) && (closedIter == closedNodes.end()))
if ((openIter == openNodes.end()) && (closedIter == closedNodes.end()))
{
//Regarding the const_cast - normally you should not modify an object which is in an sdt::set.
//The reason is that objects in a set are stored sorted in a tree so they can be accessed quickly,
@ -245,7 +245,7 @@ namespace PolyVox
float AStarPathfinder<VolumeType>::SixConnectedCost(const Vector3DInt32& a, const Vector3DInt32& b)
{
//This is the only heuristic I'm sure of - just use the manhatten distance for the 6-connected case.
uint32_t faceSteps = std::abs(a.getX()-b.getX()) + std::abs(a.getY()-b.getY()) + std::abs(a.getZ()-b.getZ());
uint32_t faceSteps = std::abs(a.getX() - b.getX()) + std::abs(a.getY() - b.getY()) + std::abs(a.getZ() - b.getZ());
return faceSteps * 1.0f;
}
@ -257,7 +257,7 @@ namespace PolyVox
//6-connected case. This means 'h' will be bigger than it should be, resulting in a faster path which may not
//actually be the shortest one. If you have a correct heuristic for the 18-connected case then please let me know.
return SixConnectedCost(a,b);
return SixConnectedCost(a, b);
}
template<typename VolumeType>
@ -269,7 +269,7 @@ namespace PolyVox
array[0] = std::abs(a.getX() - b.getX());
array[1] = std::abs(a.getY() - b.getY());
array[2] = std::abs(a.getZ() - b.getZ());
//Maybe this is better implemented directly
//using three compares and two swaps... but not
//until the profiler says so.
@ -286,8 +286,8 @@ namespace PolyVox
float AStarPathfinder<VolumeType>::computeH(const Vector3DInt32& a, const Vector3DInt32& b)
{
float hVal;
switch(m_params.connectivity)
switch (m_params.connectivity)
{
case TwentySixConnected:
hVal = TwentySixConnectedCost(a, b);
@ -295,7 +295,7 @@ namespace PolyVox
case EighteenConnected:
hVal = EighteenConnectedCost(a, b);
break;
case SixConnected:
case SixConnected:
hVal = SixConnectedCost(a, b);
break;
default:
@ -304,9 +304,9 @@ namespace PolyVox
//Sanity checks in debug mode. These can come out eventually, but I
//want to make sure that the heuristics I've come up with make sense.
POLYVOX_ASSERT((a-b).length() <= TwentySixConnectedCost(a,b), "A* heuristic error.");
POLYVOX_ASSERT(TwentySixConnectedCost(a,b) <= EighteenConnectedCost(a,b), "A* heuristic error.");
POLYVOX_ASSERT(EighteenConnectedCost(a,b) <= SixConnectedCost(a,b), "A* heuristic error.");
POLYVOX_ASSERT((a - b).length() <= TwentySixConnectedCost(a, b), "A* heuristic error.");
POLYVOX_ASSERT(TwentySixConnectedCost(a, b) <= EighteenConnectedCost(a, b), "A* heuristic error.");
POLYVOX_ASSERT(EighteenConnectedCost(a, b) <= SixConnectedCost(a, b), "A* heuristic error.");
//Apply the bias to the computed h value;
hVal *= m_params.hBias;
@ -323,8 +323,8 @@ namespace PolyVox
//while the other one doesn't - both approaches are valid). For the same reason we want
//to make sure that position (x,y,z) has a differnt hash from e.g. position (x,z,y).
uint32_t aX = (a.getX() << 16) & 0x00FF0000;
uint32_t aY = (a.getY() << 8) & 0x0000FF00;
uint32_t aZ = (a.getZ() ) & 0x000000FF;
uint32_t aY = (a.getY() << 8) & 0x0000FF00;
uint32_t aZ = (a.getZ()) & 0x000000FF;
uint32_t hashVal = hash(aX | aY | aZ);
//Stop hashVal going over 65535, and divide by 1000000 to make sure it is small.
@ -339,14 +339,14 @@ namespace PolyVox
// Robert Jenkins' 32 bit integer hash function
// http://www.burtleburtle.net/bob/hash/integer.html
template<typename VolumeType>
uint32_t AStarPathfinder<VolumeType>::hash( uint32_t a)
uint32_t AStarPathfinder<VolumeType>::hash(uint32_t a)
{
a = (a+0x7ed55d16) + (a<<12);
a = (a^0xc761c23c) ^ (a>>19);
a = (a+0x165667b1) + (a<<5);
a = (a+0xd3a2646c) ^ (a<<9);
a = (a+0xfd7046c5) + (a<<3);
a = (a^0xb55a4f09) ^ (a>>16);
a = (a + 0x7ed55d16) + (a << 12);
a = (a ^ 0xc761c23c) ^ (a >> 19);
a = (a + 0x165667b1) + (a << 5);
a = (a + 0xd3a2646c) ^ (a << 9);
a = (a + 0xfd7046c5) + (a << 3);
a = (a ^ 0xb55a4f09) ^ (a >> 16);
return a;
}
}

View File

@ -42,10 +42,10 @@ namespace PolyVox
{
/**
* \file
*
*
* Ambient occlusion
*/
template<typename VolumeType, typename IsVoxelTransparentCallback>
class AmbientOcclusionCalculatorRaycastCallback
{
@ -72,7 +72,7 @@ namespace PolyVox
// This will be 'perfect forwarding' using 'universal references'
// This will require C++11 rvalue references which is why I haven't made the
// change yet.
/// Calculate the ambient occlusion for the volume
template<typename VolumeType, typename IsVoxelTransparentCallback>
void calculateAmbientOcclusion(VolumeType* volInput, Array<3, uint8_t>* arrayResult, const Region& region, float fRayLength, uint8_t uNoOfSamplesPerOutputElement, IsVoxelTransparentCallback isVoxelTransparentCallback);

View File

@ -76,14 +76,14 @@ namespace PolyVox
const float fHalfRatioZ = fRatioZ * 0.5f;
const Vector3DFloat v3dHalfRatio(fHalfRatioX, fHalfRatioY, fHalfRatioZ);
const Vector3DFloat v3dOffset(0.5f,0.5f,0.5f);
const Vector3DFloat v3dOffset(0.5f, 0.5f, 0.5f);
//This loop iterates over the bottom-lower-left voxel in each of the cells in the output array
for(uint16_t z = region.getLowerZ(); z <= region.getUpperZ(); z += iRatioZ)
for (uint16_t z = region.getLowerZ(); z <= region.getUpperZ(); z += iRatioZ)
{
for(uint16_t y = region.getLowerY(); y <= region.getUpperY(); y += iRatioY)
for (uint16_t y = region.getLowerY(); y <= region.getUpperY(); y += iRatioY)
{
for(uint16_t x = region.getLowerX(); x <= region.getUpperX(); x += iRatioX)
for (uint16_t x = region.getLowerX(); x <= region.getUpperX(); x += iRatioX)
{
//Compute a start position corresponding to
//the centre of the cell in the output array.
@ -94,8 +94,8 @@ namespace PolyVox
//Keep track of how many rays did not hit anything
uint8_t uVisibleDirections = 0;
for(int ct = 0; ct < uNoOfSamplesPerOutputElement; ct++)
{
for (int ct = 0; ct < uNoOfSamplesPerOutputElement; ct++)
{
//We take a random vector with components going from -1 to 1 and scale it to go from -halfRatio to +halfRatio.
//This jitter value moves our sample point from the centre of the array cell to somewhere else in the array cell
Vector3DFloat v3dJitter = randomVectors[(uRandomVectorIndex += (++uIndexIncreament)) % 1019]; //Prime number helps avoid repetition on successive loops.
@ -104,20 +104,20 @@ namespace PolyVox
Vector3DFloat v3dRayDirection = randomUnitVectors[(uRandomUnitVectorIndex += (++uIndexIncreament)) % 1021]; //Different prime number.
v3dRayDirection *= fRayLength;
AmbientOcclusionCalculatorRaycastCallback<VolumeType, IsVoxelTransparentCallback> ambientOcclusionCalculatorRaycastCallback(isVoxelTransparentCallback);
RaycastResult result = raycastWithDirection(volInput, v3dRayStart, v3dRayDirection, ambientOcclusionCalculatorRaycastCallback);
// Note - The performance of this could actually be improved it we exited as soon
// as the ray left the volume. The raycast test has an example of how to do this.
if(result == RaycastResults::Completed)
if (result == RaycastResults::Completed)
{
++uVisibleDirections;
}
}
float fVisibility;
if(uNoOfSamplesPerOutputElement == 0)
if (uNoOfSamplesPerOutputElement == 0)
{
//The user might request zero samples (I've done this in the past while debugging - I don't want to
//wait for ambient occlusion but I do want as valid result for rendering). Avoid the divide by zero.

View File

@ -43,7 +43,7 @@ namespace PolyVox
public:
typedef _VoxelType VoxelType;
#ifndef SWIG
#ifndef SWIG
template <typename DerivedVolumeType>
class Sampler
{
@ -52,7 +52,7 @@ namespace PolyVox
~Sampler();
Vector3DInt32 getPosition(void) const;
inline VoxelType getVoxel(void) const;
inline VoxelType getVoxel(void) const;
void setPosition(const Vector3DInt32& v3dNewPos);
void setPosition(int32_t xPos, int32_t yPos, int32_t zPos);
@ -105,7 +105,7 @@ namespace PolyVox
int32_t mYPosInVolume;
int32_t mZPosInVolume;
};
#endif // SWIG
#endif // SWIG
public:
/// Gets a voxel at the position given by <tt>x,y,z</tt> coordinates
@ -121,7 +121,7 @@ namespace PolyVox
/// Calculates approximatly how many bytes of memory the volume is currently using.
uint32_t calculateSizeInBytes(void);
protected:
protected:
/// Constructor for creating a volume.
BaseVolume();

View File

@ -125,6 +125,6 @@ namespace PolyVox
uint32_t BaseVolume<VoxelType>::calculateSizeInBytes(void)
{
return this->getWidth() * this->getHeight() * this->getDepth() * sizeof(VoxelType);
}
}
}

View File

@ -30,9 +30,9 @@ namespace PolyVox
template <typename DerivedVolumeType>
BaseVolume<VoxelType>::Sampler<DerivedVolumeType>::Sampler(DerivedVolumeType* volume)
:mVolume(volume)
,mXPosInVolume(0)
,mYPosInVolume(0)
,mZPosInVolume(0)
, mXPosInVolume(0)
, mYPosInVolume(0)
, mZPosInVolume(0)
{
}

View File

@ -215,17 +215,17 @@ namespace PolyVox
POLYVOX_THROW(std::runtime_error, "All slots full but no matches during cubic surface extraction. This is probably a bug in PolyVox");
return -1; //Should never happen.
}
/// Do not use this class directly. Use the 'extractCubicSurface' function instead (see examples).
template<typename VolumeType, typename MeshType, typename IsQuadNeeded>
class CubicSurfaceExtractor
{
{
public:
CubicSurfaceExtractor(VolumeType* volData, Region region, MeshType* result, IsQuadNeeded isQuadNeeded = IsQuadNeeded(), bool bMergeQuads = true);
private:
};
// This version of the function performs the extraction into a user-provided mesh rather than allocating a mesh automatically.

View File

@ -37,7 +37,7 @@ namespace PolyVox
public:
bool operator()(VoxelType back, VoxelType front, VoxelType& materialToUse)
{
if((back > 0) && (front == 0))
if ((back > 0) && (front == 0))
{
materialToUse = static_cast<VoxelType>(back);
return true;

View File

@ -39,25 +39,25 @@ namespace PolyVox
* type to be used. However, the Marching Cubes algorithm does have some requirents about the underlying data in that conceptually it operates
* on a <i>density field</i>. In addition, the PolyVox implementation of the Marching Cubes algorithm also understands the idea of each voxel
* having a material which is copied into the vertex data.
*
*
* Because we want the MarchingCubesSurfaceExtractor to work on <i>any</i> voxel type, we use a <i>Marching Cubes controller</i> (passed as
* a parameter of the MarchingCubesSurfaceExtractor) to expose the required properties. This parameter defaults to the DefaultMarchingCubesController.
* The main implementation of this class is designed to work with primitives data types, and the class is also specialised for the Material,
* Density and MaterialdensityPair classes.
*
*
* If you create a custom class for your voxel data then you probably want to include a specialisation of DefaultMarchingCubesController,
* though you don't have to if you don't want to use the Marching Cubes algorithm or if you prefer to define a seperate Marching Cubes controller
* and pass it as an explicit parameter (rather than relying on the default).
*
*
* For primitive types, the DefaultMarchingCubesController considers the value of the voxel to represent it's density and just returns a constant
* for the material. So you can, for example, run the MarchingCubesSurfaceExtractor on a volume of floats or ints.
*
*
* It is possible to customise the behaviour of the controller by providing a threshold value through the constructor. The extracted surface
* will pass through the density value specified by the threshold, and so you should make sure that the threshold value you choose is between
* the minimum and maximum values found in your volume data. By default it is in the middle of the representable range of the underlying type.
*
*
* \sa MarchingCubesSurfaceExtractor
*
*
*/
template<typename VoxelType>
class DefaultMarchingCubesController
@ -76,7 +76,7 @@ namespace PolyVox
* if the voxel type is 'float' then the representable range is -FLT_MAX to FLT_MAX and the threshold will be set to zero.
*/
DefaultMarchingCubesController(void)
{
{
if (std::is_signed<DensityType>())
{
m_tThreshold = DensityType(0);
@ -119,7 +119,7 @@ namespace PolyVox
*/
MaterialType blendMaterials(VoxelType a, VoxelType b, float /*weight*/)
{
if(convertToDensity(a) > convertToDensity(b))
if (convertToDensity(a) > convertToDensity(b))
{
return convertToMaterial(a);
}

View File

@ -93,13 +93,13 @@ namespace PolyVox
Type getDensity() const { return m_uDensity; }
/**
* Set the density of the voxel
*
*
* \param uDensity The density to set to
*/
void setDensity(Type uDensity) { m_uDensity = uDensity; }
/// \return The maximum allowed density of the voxel
static Type getMaxDensity() { return (std::numeric_limits<Type>::max)(); }
static Type getMaxDensity() { return (std::numeric_limits<Type>::max)(); }
/// \return The minimum allowed density of the voxel
static Type getMinDensity() { return (std::numeric_limits<Type>::min)(); }
@ -175,7 +175,7 @@ namespace PolyVox
}
DensityType getThreshold(void)
{
{
return m_tThreshold;
}

View File

@ -49,26 +49,26 @@ namespace PolyVox
/// Constructor
FilePager(const std::string& strFolderName = ".")
:PagedVolume<VoxelType>::Pager()
,m_strFolderName(strFolderName)
, m_strFolderName(strFolderName)
{
// Add the trailing slash, assuming the user dind't already do it.
// Add the trailing slash, assuming the user dind't already do it.
if ((m_strFolderName.back() != '/') && (m_strFolderName.back() != '\\'))
{
{
m_strFolderName.append("/");
}
}
// Build a unique postfix to avoid filename conflicts between multiple pagers/runs.
// Not a very robust solution but this class is meant as an example for testing really.
std::stringstream ss;
ss << time(0) << "--"; // Avoid multiple runs using the same filenames.
ss << this; // Avoid multiple FilePagers using the same filenames.
m_strPostfix = ss.str();
// Build a unique postfix to avoid filename conflicts between multiple pagers/runs.
// Not a very robust solution but this class is meant as an example for testing really.
std::stringstream ss;
ss << time(0) << "--"; // Avoid multiple runs using the same filenames.
ss << this; // Avoid multiple FilePagers using the same filenames.
m_strPostfix = ss.str();
}
/// Destructor
virtual ~FilePager()
{
for(std::vector<std::string>::iterator iter = m_vecCreatedFiles.begin(); iter < m_vecCreatedFiles.end(); iter++)
for (std::vector<std::string>::iterator iter = m_vecCreatedFiles.begin(); iter < m_vecCreatedFiles.end(); iter++)
{
POLYVOX_LOG_WARNING_IF(std::remove(iter->c_str()) != 0, "Failed to delete '", *iter, "' when destroying FilePager");
}
@ -84,8 +84,8 @@ namespace PolyVox
std::stringstream ssFilename;
ssFilename << m_strFolderName << "/"
<< region.getLowerX() << "_" << region.getLowerY() << "_" << region.getLowerZ() << "_"
<< region.getUpperX() << "_" << region.getUpperY() << "_" << region.getUpperZ()
<< "--" << m_strPostfix;
<< region.getUpperX() << "_" << region.getUpperY() << "_" << region.getUpperZ()
<< "--" << m_strPostfix;
std::string filename = ssFilename.str();
@ -93,14 +93,14 @@ namespace PolyVox
// the gameplay-cubiquity integration. See: https://github.com/blackberry/GamePlay/issues/919
FILE* pFile = fopen(filename.c_str(), "rb");
if(pFile)
if (pFile)
{
POLYVOX_LOG_TRACE("Paging in data for ", region);
/*fseek(pFile, 0L, SEEK_END);
size_t fileSizeInBytes = ftell(pFile);
fseek(pFile, 0L, SEEK_SET);
uint8_t* buffer = new uint8_t[fileSizeInBytes];
fread(buffer, sizeof(uint8_t), fileSizeInBytes, pFile);
pChunk->setData(buffer, fileSizeInBytes);
@ -108,7 +108,7 @@ namespace PolyVox
fread(pChunk->getData(), sizeof(uint8_t), pChunk->getDataSizeInBytes(), pFile);
if(ferror(pFile))
if (ferror(pFile))
{
POLYVOX_THROW(std::runtime_error, "Error reading in chunk data, even though a file exists.");
}
@ -145,7 +145,7 @@ namespace PolyVox
// the gameplay-cubiquity integration. See: https://github.com/blackberry/GamePlay/issues/919
FILE* pFile = fopen(filename.c_str(), "wb");
if(!pFile)
if (!pFile)
{
POLYVOX_THROW(std::runtime_error, "Unable to open file to write out chunk data.");
}
@ -155,7 +155,7 @@ namespace PolyVox
fwrite(pChunk->getData(), sizeof(uint8_t), pChunk->getDataSizeInBytes(), pFile);
if(ferror(pFile))
if (ferror(pFile))
{
POLYVOX_THROW(std::runtime_error, "Error writing out chunk data.");
}

View File

@ -53,8 +53,8 @@ namespace PolyVox
{
Node(int x, int y, int z)
:gVal(std::numeric_limits<float>::quiet_NaN()) //Initilise with NaNs so that we will
,hVal(std::numeric_limits<float>::quiet_NaN()) //know if we forget to set these properly.
,parent(0)
, hVal(std::numeric_limits<float>::quiet_NaN()) //know if we forget to set these properly.
, parent(0)
{
position.setX(x);
position.setY(y);

View File

@ -141,19 +141,19 @@ namespace PolyVox
/*inline uint32_t convertCoordinates(uint16_t uXPos, uint16_t uYPos, uint16_t uZPos)
{
uint64_t answer = 0;
answer = morton256_z[(uZPos >> 16) & 0xFF] | // we start by shifting the third byte, since we only look at the first 21 bits
morton256_y[(uYPos >> 16) & 0xFF] |
morton256_x[(uXPos >> 16) & 0xFF];
answer = answer << 48 |
morton256_z[(uZPos >> 8) & 0xFF] | // shifting second byte
morton256_y[(uYPos >> 8) & 0xFF] |
morton256_x[(uXPos >> 8) & 0xFF];
answer = answer << 24 |
morton256_z[(uZPos)& 0xFF] | // first byte
morton256_y[(uYPos)& 0xFF] |
morton256_x[(uXPos)& 0xFF];
return answer;
uint64_t answer = 0;
answer = morton256_z[(uZPos >> 16) & 0xFF] | // we start by shifting the third byte, since we only look at the first 21 bits
morton256_y[(uYPos >> 16) & 0xFF] |
morton256_x[(uXPos >> 16) & 0xFF];
answer = answer << 48 |
morton256_z[(uZPos >> 8) & 0xFF] | // shifting second byte
morton256_y[(uYPos >> 8) & 0xFF] |
morton256_x[(uXPos >> 8) & 0xFF];
answer = answer << 24 |
morton256_z[(uZPos)& 0xFF] | // first byte
morton256_y[(uYPos)& 0xFF] |
morton256_x[(uXPos)& 0xFF];
return answer;
}*/
}

View File

@ -30,7 +30,7 @@
#include "PolyVox/Vector.h"
namespace PolyVox
{
{
const Vector3DFloat randomUnitVectors[1024] =
{
Vector3DFloat(+0.339922f, +0.827727f, -0.446454f),

View File

@ -30,7 +30,7 @@
#include "PolyVox/Vector.h"
namespace PolyVox
{
{
const Vector3DFloat randomVectors[1024] =
{
Vector3DFloat(+0.348918f, -0.385662f, +0.650197f),

View File

@ -41,12 +41,12 @@ namespace PolyVox
start();
}
}
void start(void)
{
m_start = clock::now();
}
float elapsedTimeInSeconds(void)
{
std::chrono::duration<float> elapsed_seconds = clock::now() - m_start;
@ -64,7 +64,7 @@ namespace PolyVox
std::chrono::duration<float, std::micro> elapsed_microseconds = clock::now() - m_start;
return elapsed_microseconds.count();
}
private:
typedef std::chrono::system_clock clock;
std::chrono::time_point<clock> m_start;

View File

@ -29,20 +29,20 @@ namespace PolyVox
{
template <typename Type>
Type lerp(
const Type& v0,const Type& v1,
const float x)
{
const Type& v0, const Type& v1,
const float x)
{
//Interpolate along X
Type v0_1 = (v1 - v0) * x + v0;
return v0_1;
}
}
template <typename Type>
Type bilerp(
const Type& v00,const Type& v10,const Type& v01,const Type& v11,
const float x, const float y)
{
const Type& v00, const Type& v10, const Type& v01, const Type& v11,
const float x, const float y)
{
// Linearly interpolate along x
Type v00_10 = lerp(v00, v10, x);
Type v01_11 = lerp(v01, v11, x);
@ -51,23 +51,23 @@ namespace PolyVox
Type v00_10__v01_11 = lerp(v00_10, v01_11, y);
return v00_10__v01_11;
}
}
template <typename Type>
Type trilerp(
const Type& v000,const Type& v100,const Type& v010,const Type& v110,
const Type& v001,const Type& v101,const Type& v011,const Type& v111,
const float x, const float y, const float z)
{
const Type& v000, const Type& v100, const Type& v010, const Type& v110,
const Type& v001, const Type& v101, const Type& v011, const Type& v111,
const float x, const float y, const float z)
{
// Bilinearly interpolate along Y
Type v000_v100__v010_v110 = bilerp(v000, v100, v010, v110, x, y);
Type v001_v101__v011_v111 = bilerp(v001, v101, v011, v111, x, y);
// And linearly interpolate the results along z
Type v000_v100__v010_v110____v001_v101__v011_v111 = lerp(v000_v100__v010_v110, v001_v101__v011_v111, z);
return v000_v100__v010_v110____v001_v101__v011_v111;
}
}
}
#endif //__PolyVox_Interpolation_H__

View File

@ -35,7 +35,7 @@ namespace PolyVox
{
Vector3DInt32 v3dInitialPosition(m_Iter->getPosition().getX(), m_Iter->getPosition().getY(), m_Iter->getPosition().getZ());
if(v3dInitialPosition.getX() < m_regValid.getUpperX())
if (v3dInitialPosition.getX() < m_regValid.getUpperX())
{
m_Iter->movePositiveX();
return true;
@ -43,7 +43,7 @@ namespace PolyVox
v3dInitialPosition.setX(m_regValid.getLowerX());
if(v3dInitialPosition.getY() < m_regValid.getUpperY())
if (v3dInitialPosition.getY() < m_regValid.getUpperY())
{
v3dInitialPosition.setY(v3dInitialPosition.getY() + 1);
m_Iter->setPosition(v3dInitialPosition);
@ -52,7 +52,7 @@ namespace PolyVox
v3dInitialPosition.setY(m_regValid.getLowerY());
if(v3dInitialPosition.getZ() < m_regValid.getUpperZ())
if (v3dInitialPosition.getZ() < m_regValid.getUpperZ())
{
v3dInitialPosition.setZ(v3dInitialPosition.getZ() + 1);
m_Iter->setPosition(v3dInitialPosition);

View File

@ -34,19 +34,19 @@ namespace PolyVox
template< typename SrcVolumeType, typename DstVolumeType, typename AccumulationType>
LowPassFilter<SrcVolumeType, DstVolumeType, AccumulationType>::LowPassFilter(SrcVolumeType* pVolSrc, Region regSrc, DstVolumeType* pVolDst, Region regDst, uint32_t uKernelSize)
:m_pVolSrc(pVolSrc)
,m_regSrc(regSrc)
,m_pVolDst(pVolDst)
,m_regDst(regDst)
,m_uKernelSize(uKernelSize)
, m_regSrc(regSrc)
, m_pVolDst(pVolDst)
, m_regDst(regDst)
, m_uKernelSize(uKernelSize)
{
//Kernel size must be at least three
if(m_uKernelSize < 3)
if (m_uKernelSize < 3)
{
POLYVOX_THROW(std::invalid_argument, "Kernel size must be at least three");
}
//Kernel size must be odd
if(m_uKernelSize % 2 == 0)
if (m_uKernelSize % 2 == 0)
{
POLYVOX_THROW(std::invalid_argument, "Kernel size must be odd");
}
@ -73,11 +73,11 @@ namespace PolyVox
typename SrcVolumeType::Sampler srcSampler(m_pVolSrc);
for(int32_t iSrcZ = iSrcMinZ, iDstZ = iDstMinZ; iSrcZ <= iSrcMaxZ; iSrcZ++, iDstZ++)
for (int32_t iSrcZ = iSrcMinZ, iDstZ = iDstMinZ; iSrcZ <= iSrcMaxZ; iSrcZ++, iDstZ++)
{
for(int32_t iSrcY = iSrcMinY, iDstY = iDstMinY; iSrcY <= iSrcMaxY; iSrcY++, iDstY++)
for (int32_t iSrcY = iSrcMinY, iDstY = iDstMinY; iSrcY <= iSrcMaxY; iSrcY++, iDstY++)
{
for(int32_t iSrcX = iSrcMinX, iDstX = iDstMinX; iSrcX <= iSrcMaxX; iSrcX++, iDstX++)
for (int32_t iSrcX = iSrcMinX, iDstX = iDstMinX; iSrcX <= iSrcMaxX; iSrcX++, iDstX++)
{
AccumulationType tSrcVoxel(0);
srcSampler.setPosition(iSrcX, iSrcY, iSrcZ);
@ -136,13 +136,13 @@ namespace PolyVox
//Clear to zeros (necessary?)
//FIXME - use Volume::fill() method. Implemented in base class as below
//but with optimised implementations in subclasses?
for(int32_t z = satLowerCorner.getZ(); z <= satUpperCorner.getZ(); z++)
for (int32_t z = satLowerCorner.getZ(); z <= satUpperCorner.getZ(); z++)
{
for(int32_t y = satLowerCorner.getY(); y <= satUpperCorner.getY(); y++)
for (int32_t y = satLowerCorner.getY(); y <= satUpperCorner.getY(); y++)
{
for(int32_t x = satLowerCorner.getX(); x <= satUpperCorner.getX(); x++)
for (int32_t x = satLowerCorner.getX(); x <= satUpperCorner.getX(); x++)
{
satVolume.setVoxel(x,y,z,0);
satVolume.setVoxel(x, y, z, 0);
}
}
}
@ -170,47 +170,47 @@ namespace PolyVox
srcIterCont.moveForward();
}while(satIterCont.moveForward());
} while (satIterCont.moveForward());
//Build SAT in three passes
/*for(int32_t z = satLowerCorner.getZ(); z <= satUpperCorner.getZ(); z++)
{
for(int32_t y = satLowerCorner.getY(); y <= satUpperCorner.getY(); y++)
{
for(int32_t x = satLowerCorner.getX(); x <= satUpperCorner.getX(); x++)
{
AccumulationType previousSum = static_cast<AccumulationType>(satVolume.getVoxel(x-1,y,z));
AccumulationType currentVal = static_cast<AccumulationType>(m_pVolSrc->getVoxel(x,y,z));
for(int32_t y = satLowerCorner.getY(); y <= satUpperCorner.getY(); y++)
{
for(int32_t x = satLowerCorner.getX(); x <= satUpperCorner.getX(); x++)
{
AccumulationType previousSum = static_cast<AccumulationType>(satVolume.getVoxel(x-1,y,z));
AccumulationType currentVal = static_cast<AccumulationType>(m_pVolSrc->getVoxel(x,y,z));
satVolume.setVoxel(x,y,z,previousSum + currentVal);
}
}
satVolume.setVoxel(x,y,z,previousSum + currentVal);
}
}
}*/
for(int32_t z = satLowerCorner.getZ(); z <= satUpperCorner.getZ(); z++)
for (int32_t z = satLowerCorner.getZ(); z <= satUpperCorner.getZ(); z++)
{
for(int32_t y = satLowerCorner.getY(); y <= satUpperCorner.getY(); y++)
for (int32_t y = satLowerCorner.getY(); y <= satUpperCorner.getY(); y++)
{
for(int32_t x = satLowerCorner.getX(); x <= satUpperCorner.getX(); x++)
for (int32_t x = satLowerCorner.getX(); x <= satUpperCorner.getX(); x++)
{
AccumulationType previousSum = static_cast<AccumulationType>(satVolume.getVoxel(x,y-1,z));
AccumulationType currentSum = static_cast<AccumulationType>(satVolume.getVoxel(x,y,z));
AccumulationType previousSum = static_cast<AccumulationType>(satVolume.getVoxel(x, y - 1, z));
AccumulationType currentSum = static_cast<AccumulationType>(satVolume.getVoxel(x, y, z));
satVolume.setVoxel(x,y,z,previousSum + currentSum);
satVolume.setVoxel(x, y, z, previousSum + currentSum);
}
}
}
for(int32_t z = satLowerCorner.getZ(); z <= satUpperCorner.getZ(); z++)
for (int32_t z = satLowerCorner.getZ(); z <= satUpperCorner.getZ(); z++)
{
for(int32_t y = satLowerCorner.getY(); y <= satUpperCorner.getY(); y++)
for (int32_t y = satLowerCorner.getY(); y <= satUpperCorner.getY(); y++)
{
for(int32_t x = satLowerCorner.getX(); x <= satUpperCorner.getX(); x++)
for (int32_t x = satLowerCorner.getX(); x <= satUpperCorner.getX(); x++)
{
AccumulationType previousSum = static_cast<AccumulationType>(satVolume.getVoxel(x,y,z-1));
AccumulationType currentSum = static_cast<AccumulationType>(satVolume.getVoxel(x,y,z));
AccumulationType previousSum = static_cast<AccumulationType>(satVolume.getVoxel(x, y, z - 1));
AccumulationType currentSum = static_cast<AccumulationType>(satVolume.getVoxel(x, y, z));
satVolume.setVoxel(x,y,z,previousSum + currentSum);
satVolume.setVoxel(x, y, z, previousSum + currentSum);
}
}
}
@ -221,11 +221,11 @@ namespace PolyVox
const Vector3DInt32& v3dSrcLowerCorner = m_regSrc.getLowerCorner();
for(int32_t iDstZ = v3dDstLowerCorner.getZ(), iSrcZ = v3dSrcLowerCorner.getZ(); iDstZ <= v3dDstUpperCorner.getZ(); iDstZ++, iSrcZ++)
for (int32_t iDstZ = v3dDstLowerCorner.getZ(), iSrcZ = v3dSrcLowerCorner.getZ(); iDstZ <= v3dDstUpperCorner.getZ(); iDstZ++, iSrcZ++)
{
for(int32_t iDstY = v3dDstLowerCorner.getY(), iSrcY = v3dSrcLowerCorner.getY(); iDstY <= v3dDstUpperCorner.getY(); iDstY++, iSrcY++)
for (int32_t iDstY = v3dDstLowerCorner.getY(), iSrcY = v3dSrcLowerCorner.getY(); iDstY <= v3dDstUpperCorner.getY(); iDstY++, iSrcY++)
{
for(int32_t iDstX = v3dDstLowerCorner.getX(), iSrcX = v3dSrcLowerCorner.getX(); iDstX <= v3dDstUpperCorner.getX(); iDstX++, iSrcX++)
for (int32_t iDstX = v3dDstLowerCorner.getX(), iSrcX = v3dSrcLowerCorner.getX(); iDstX <= v3dDstUpperCorner.getX(); iDstX++, iSrcX++)
{
int32_t satLowerX = iSrcX - border - 1;
int32_t satLowerY = iSrcY - border - 1;
@ -235,16 +235,16 @@ namespace PolyVox
int32_t satUpperY = iSrcY + border;
int32_t satUpperZ = iSrcZ + border;
AccumulationType a = satVolume.getVoxel(satLowerX,satLowerY,satLowerZ);
AccumulationType b = satVolume.getVoxel(satUpperX,satLowerY,satLowerZ);
AccumulationType c = satVolume.getVoxel(satLowerX,satUpperY,satLowerZ);
AccumulationType d = satVolume.getVoxel(satUpperX,satUpperY,satLowerZ);
AccumulationType e = satVolume.getVoxel(satLowerX,satLowerY,satUpperZ);
AccumulationType f = satVolume.getVoxel(satUpperX,satLowerY,satUpperZ);
AccumulationType g = satVolume.getVoxel(satLowerX,satUpperY,satUpperZ);
AccumulationType h = satVolume.getVoxel(satUpperX,satUpperY,satUpperZ);
AccumulationType a = satVolume.getVoxel(satLowerX, satLowerY, satLowerZ);
AccumulationType b = satVolume.getVoxel(satUpperX, satLowerY, satLowerZ);
AccumulationType c = satVolume.getVoxel(satLowerX, satUpperY, satLowerZ);
AccumulationType d = satVolume.getVoxel(satUpperX, satUpperY, satLowerZ);
AccumulationType e = satVolume.getVoxel(satLowerX, satLowerY, satUpperZ);
AccumulationType f = satVolume.getVoxel(satUpperX, satLowerY, satUpperZ);
AccumulationType g = satVolume.getVoxel(satLowerX, satUpperY, satUpperZ);
AccumulationType h = satVolume.getVoxel(satUpperX, satUpperY, satUpperZ);
AccumulationType sum = h+c-d-g-f-a+b+e;
AccumulationType sum = h + c - d - g - f - a + b + e;
uint32_t sideLength = border * 2 + 1;
AccumulationType average = sum / (sideLength*sideLength*sideLength);

View File

@ -112,7 +112,7 @@ namespace PolyVox
{
// Extract the two bytes from the uint16_t.
uint16_t ux = (encodedNormal >> 8) & 0xFF;
uint16_t uy = (encodedNormal ) & 0xFF;
uint16_t uy = (encodedNormal)& 0xFF;
// Convert to floats in the range [-1.0f, +1.0f].
float ex = ux / 127.5f - 1.0f;

View File

@ -142,7 +142,7 @@ namespace PolyVox
template< typename VolumeType, typename MeshType, typename ControllerType >
void extractMarchingCubesMeshCustom(VolumeType* volData, Region region, MeshType* result, ControllerType controller)
{
{
// Validate parameters
POLYVOX_THROW_IF(volData == nullptr, std::invalid_argument, "Provided volume cannot be null");
POLYVOX_THROW_IF(result == nullptr, std::invalid_argument, "Provided mesh cannot be null");
@ -161,7 +161,7 @@ namespace PolyVox
const uint32_t uRegionHeightInVoxels = region.getHeightInVoxels();
const uint32_t uRegionDepthInVoxels = region.getDepthInVoxels();
typename ControllerType::DensityType tThreshold = controller.getThreshold();
typename ControllerType::DensityType tThreshold = controller.getThreshold();
// A naive implemetation of Marching Cubes might sample the eight corner voxels of every cell to determine the cell index.
// However, when processing the cells sequentially we cn observe that many of the voxels are shared with previous adjacent
@ -456,5 +456,5 @@ namespace PolyVox
POLYVOX_LOG_TRACE("Marching cubes surface extraction took ", timer.elapsedTimeInMilliSeconds(),
"ms (Region size = ", region.getWidthInVoxels(), "x", region.getHeightInVoxels(),
"x", region.getDepthInVoxels(), ")");
}
}
}

View File

@ -58,7 +58,7 @@ namespace PolyVox
Type getMaterial() const { return m_uMaterial; }
/**
* Set the material value of the voxel
*
*
* \param uMaterial The material to set to
*/
void setMaterial(Type uMaterial) { m_uMaterial = uMaterial; }
@ -76,7 +76,7 @@ namespace PolyVox
public:
bool operator()(Material<Type> back, Material<Type> front, Material<Type>& materialToUse)
{
if((back.getMaterial() > 0) && (front.getMaterial() == 0))
if ((back.getMaterial() > 0) && (front.getMaterial() == 0))
{
materialToUse = back;
return true;

View File

@ -93,7 +93,7 @@ namespace PolyVox
public:
bool operator()(MaterialDensityPair<Type, NoOfMaterialBits, NoOfDensityBits> back, MaterialDensityPair<Type, NoOfMaterialBits, NoOfDensityBits> front, MaterialDensityPair<Type, NoOfMaterialBits, NoOfDensityBits>& materialToUse)
{
if((back.getMaterial() > 0) && (front.getMaterial() == 0))
if ((back.getMaterial() > 0) && (front.getMaterial() == 0))
{
materialToUse = back;
return true;
@ -135,7 +135,7 @@ namespace PolyVox
MaterialDensityPair<Type, NoOfMaterialBits, NoOfDensityBits> blendMaterials(MaterialDensityPair<Type, NoOfMaterialBits, NoOfDensityBits> a, MaterialDensityPair<Type, NoOfMaterialBits, NoOfDensityBits> b, float /*weight*/)
{
if(convertToDensity(a) > convertToDensity(b))
if (convertToDensity(a) > convertToDensity(b))
{
return a;
}
@ -146,7 +146,7 @@ namespace PolyVox
}
DensityType getThreshold(void)
{
{
return m_tThreshold;
}

View File

@ -49,7 +49,7 @@ namespace PolyVox
typedef _IndexType IndexType;
Mesh();
~Mesh();
~Mesh();
IndexType getNoOfVertices(void) const;
const VertexType& getVertex(IndexType index) const;
@ -69,9 +69,9 @@ namespace PolyVox
void clear(void);
bool isEmpty(void) const;
void removeUnusedVertices(void);
private:
void removeUnusedVertices(void);
private:
std::vector<IndexType> m_vecIndices;
std::vector<VertexType> m_vecVertices;
Vector3DInt32 m_offset;

View File

@ -30,7 +30,7 @@ namespace PolyVox
}
template <typename VertexType, typename IndexType>
Mesh<VertexType, IndexType>::~Mesh()
Mesh<VertexType, IndexType>::~Mesh()
{
}
@ -136,7 +136,7 @@ namespace PolyVox
std::vector<bool> isVertexUsed(m_vecVertices.size());
std::fill(isVertexUsed.begin(), isVertexUsed.end(), false);
for(uint32_t triCt = 0; triCt < m_vecIndices.size(); triCt++)
for (uint32_t triCt = 0; triCt < m_vecIndices.size(); triCt++)
{
int v = m_vecIndices[triCt];
isVertexUsed[v] = true;
@ -144,9 +144,9 @@ namespace PolyVox
int noOfUsedVertices = 0;
std::vector<uint32_t> newPos(m_vecVertices.size());
for(IndexType vertCt = 0; vertCt < m_vecVertices.size(); vertCt++)
for (IndexType vertCt = 0; vertCt < m_vecVertices.size(); vertCt++)
{
if(isVertexUsed[vertCt])
if (isVertexUsed[vertCt])
{
m_vecVertices[noOfUsedVertices] = m_vecVertices[vertCt];
newPos[vertCt] = noOfUsedVertices;
@ -156,7 +156,7 @@ namespace PolyVox
m_vecVertices.resize(noOfUsedVertices);
for(uint32_t triCt = 0; triCt < m_vecIndices.size(); triCt++)
for (uint32_t triCt = 0; triCt < m_vecIndices.size(); triCt++)
{
m_vecIndices[triCt] = newPos[m_vecIndices[triCt]];
}

View File

@ -187,7 +187,7 @@ namespace PolyVox
//in the future
//typedef Volume<VoxelType> VolumeOfVoxelType; //Workaround for GCC/VS2010 differences.
//class Sampler : public VolumeOfVoxelType::template Sampler< PagedVolume<VoxelType> >
#ifndef SWIG
#ifndef SWIG
#if defined(_MSC_VER)
class Sampler : public BaseVolume<VoxelType>::Sampler< PagedVolume<VoxelType> > //This line works on VS2010
#else
@ -198,7 +198,7 @@ namespace PolyVox
Sampler(PagedVolume<VoxelType>* volume);
~Sampler();
inline VoxelType getVoxel(void) const;
inline VoxelType getVoxel(void) const;
void setPosition(const Vector3DInt32& v3dNewPos);
void setPosition(int32_t xPos, int32_t yPos, int32_t zPos);
@ -256,7 +256,7 @@ namespace PolyVox
uint16_t m_uChunkSideLengthMinusOne;
};
#endif // SWIG
#endif // SWIG
public:
/// Constructor for creating a fixed size volume.

View File

@ -36,38 +36,38 @@ namespace PolyVox
/// \param uChunkSideLength The size of the chunks making up the volume. Small chunks will compress/decompress faster, but there will also be more of them meaning voxel access could be slower.
////////////////////////////////////////////////////////////////////////////////
template <typename VoxelType>
PagedVolume<VoxelType>::PagedVolume(Pager* pPager, uint32_t uTargetMemoryUsageInBytes, uint16_t uChunkSideLength)
PagedVolume<VoxelType>::PagedVolume(Pager* pPager, uint32_t uTargetMemoryUsageInBytes, uint16_t uChunkSideLength)
:BaseVolume<VoxelType>()
, m_uChunkSideLength(uChunkSideLength)
, m_pPager(pPager)
{
// Validation of parameters
POLYVOX_THROW_IF(!pPager, std::invalid_argument, "You must provide a valid pager when constructing a PagedVolume");
POLYVOX_THROW_IF(uTargetMemoryUsageInBytes < 1 * 1024 * 1024, std::invalid_argument, "Target memory usage is too small to be practical");
POLYVOX_THROW_IF(m_uChunkSideLength == 0, std::invalid_argument, "Chunk side length cannot be zero.");
POLYVOX_THROW_IF(m_uChunkSideLength > 256, std::invalid_argument, "Chunk size is too large to be practical.");
POLYVOX_THROW_IF(!isPowerOf2(m_uChunkSideLength), std::invalid_argument, "Chunk side length must be a power of two.");
// Validation of parameters
POLYVOX_THROW_IF(!pPager, std::invalid_argument, "You must provide a valid pager when constructing a PagedVolume");
POLYVOX_THROW_IF(uTargetMemoryUsageInBytes < 1 * 1024 * 1024, std::invalid_argument, "Target memory usage is too small to be practical");
POLYVOX_THROW_IF(m_uChunkSideLength == 0, std::invalid_argument, "Chunk side length cannot be zero.");
POLYVOX_THROW_IF(m_uChunkSideLength > 256, std::invalid_argument, "Chunk size is too large to be practical.");
POLYVOX_THROW_IF(!isPowerOf2(m_uChunkSideLength), std::invalid_argument, "Chunk side length must be a power of two.");
// Used to perform multiplications and divisions by bit shifting.
m_uChunkSideLengthPower = logBase2(m_uChunkSideLength);
// Use to perform modulo by bit operations
m_iChunkMask = m_uChunkSideLength - 1;
// Used to perform multiplications and divisions by bit shifting.
m_uChunkSideLengthPower = logBase2(m_uChunkSideLength);
// Use to perform modulo by bit operations
m_iChunkMask = m_uChunkSideLength - 1;
// Calculate the number of chunks based on the memory limit and the size of each chunk.
uint32_t uChunkSizeInBytes = PagedVolume<VoxelType>::Chunk::calculateSizeInBytes(m_uChunkSideLength);
m_uChunkCountLimit = uTargetMemoryUsageInBytes / uChunkSizeInBytes;
// Calculate the number of chunks based on the memory limit and the size of each chunk.
uint32_t uChunkSizeInBytes = PagedVolume<VoxelType>::Chunk::calculateSizeInBytes(m_uChunkSideLength);
m_uChunkCountLimit = uTargetMemoryUsageInBytes / uChunkSizeInBytes;
// Enforce sensible limits on the number of chunks.
const uint32_t uMinPracticalNoOfChunks = 32; // Enough to make sure a chunks and it's neighbours can be loaded, with a few to spare.
const uint32_t uMaxPracticalNoOfChunks = uChunkArraySize / 2; // A hash table should only become half-full to avoid too many clashes.
POLYVOX_LOG_WARNING_IF(m_uChunkCountLimit < uMinPracticalNoOfChunks, "Requested memory usage limit of ",
uTargetMemoryUsageInBytes / (1024 * 1024), "Mb is too low and cannot be adhered to.");
m_uChunkCountLimit = (std::max)(m_uChunkCountLimit, uMinPracticalNoOfChunks);
m_uChunkCountLimit = (std::min)(m_uChunkCountLimit, uMaxPracticalNoOfChunks);
// Enforce sensible limits on the number of chunks.
const uint32_t uMinPracticalNoOfChunks = 32; // Enough to make sure a chunks and it's neighbours can be loaded, with a few to spare.
const uint32_t uMaxPracticalNoOfChunks = uChunkArraySize / 2; // A hash table should only become half-full to avoid too many clashes.
POLYVOX_LOG_WARNING_IF(m_uChunkCountLimit < uMinPracticalNoOfChunks, "Requested memory usage limit of ",
uTargetMemoryUsageInBytes / (1024 * 1024), "Mb is too low and cannot be adhered to.");
m_uChunkCountLimit = (std::max)(m_uChunkCountLimit, uMinPracticalNoOfChunks);
m_uChunkCountLimit = (std::min)(m_uChunkCountLimit, uMaxPracticalNoOfChunks);
// Inform the user about the chosen memory configuration.
POLYVOX_LOG_DEBUG("Memory usage limit for volume now set to ", (m_uChunkCountLimit * uChunkSizeInBytes) / (1024 * 1024),
"Mb (", m_uChunkCountLimit, " chunks of ", uChunkSizeInBytes / 1024, "Kb each).");
// Inform the user about the chosen memory configuration.
POLYVOX_LOG_DEBUG("Memory usage limit for volume now set to ", (m_uChunkCountLimit * uChunkSizeInBytes) / (1024 * 1024),
"Mb (", m_uChunkCountLimit, " chunks of ", uChunkSizeInBytes / 1024, "Kb each).");
}
////////////////////////////////////////////////////////////////////////////////
@ -181,13 +181,13 @@ namespace PolyVox
{
// Convert the start and end positions into chunk space coordinates
Vector3DInt32 v3dStart;
for(int i = 0; i < 3; i++)
for (int i = 0; i < 3; i++)
{
v3dStart.setElement(i, regPrefetch.getLowerCorner().getElement(i) >> m_uChunkSideLengthPower);
}
Vector3DInt32 v3dEnd;
for(int i = 0; i < 3; i++)
for (int i = 0; i < 3; i++)
{
v3dEnd.setElement(i, regPrefetch.getUpperCorner().getElement(i) >> m_uChunkSideLengthPower);
}
@ -199,13 +199,13 @@ namespace PolyVox
uNoOfChunks = (std::min)(uNoOfChunks, m_uChunkCountLimit);
// Loops over the specified positions and touch the corresponding chunks.
for(int32_t x = v3dStart.getX(); x <= v3dEnd.getX(); x++)
for (int32_t x = v3dStart.getX(); x <= v3dEnd.getX(); x++)
{
for(int32_t y = v3dStart.getY(); y <= v3dEnd.getY(); y++)
for (int32_t y = v3dStart.getY(); y <= v3dEnd.getY(); y++)
{
for(int32_t z = v3dStart.getZ(); z <= v3dEnd.getZ(); z++)
{
getChunk(x,y,z);
for (int32_t z = v3dStart.getZ(); z <= v3dEnd.getZ(); z++)
{
getChunk(x, y, z);
}
}
}
@ -233,33 +233,33 @@ namespace PolyVox
/*template <typename VoxelType>
void PagedVolume<VoxelType>::flush(Region regFlush)
{
// Clear this pointer in case the chunk it points at is flushed.
m_pLastAccessedChunk = nullptr;
// Clear this pointer in case the chunk it points at is flushed.
m_pLastAccessedChunk = nullptr;
// Convert the start and end positions into chunk space coordinates
Vector3DInt32 v3dStart;
for(int i = 0; i < 3; i++)
{
v3dStart.setElement(i, regFlush.getLowerCorner().getElement(i) >> m_uChunkSideLengthPower);
}
// Convert the start and end positions into chunk space coordinates
Vector3DInt32 v3dStart;
for(int i = 0; i < 3; i++)
{
v3dStart.setElement(i, regFlush.getLowerCorner().getElement(i) >> m_uChunkSideLengthPower);
}
Vector3DInt32 v3dEnd;
for(int i = 0; i < 3; i++)
{
v3dEnd.setElement(i, regFlush.getUpperCorner().getElement(i) >> m_uChunkSideLengthPower);
}
Vector3DInt32 v3dEnd;
for(int i = 0; i < 3; i++)
{
v3dEnd.setElement(i, regFlush.getUpperCorner().getElement(i) >> m_uChunkSideLengthPower);
}
// Loops over the specified positions and delete the corresponding chunks.
for(int32_t x = v3dStart.getX(); x <= v3dEnd.getX(); x++)
{
for(int32_t y = v3dStart.getY(); y <= v3dEnd.getY(); y++)
{
for(int32_t z = v3dStart.getZ(); z <= v3dEnd.getZ(); z++)
{
m_mapChunks.erase(Vector3DInt32(x, y, z));
}
}
}
// Loops over the specified positions and delete the corresponding chunks.
for(int32_t x = v3dStart.getX(); x <= v3dEnd.getX(); x++)
{
for(int32_t y = v3dStart.getY(); y <= v3dEnd.getY(); y++)
{
for(int32_t z = v3dStart.getZ(); z <= v3dEnd.getZ(); z++)
{
m_mapChunks.erase(Vector3DInt32(x, y, z));
}
}
}
}*/
template <typename VoxelType>
@ -365,13 +365,13 @@ namespace PolyVox
m_arrayChunks[uOldestChunkIndex] = nullptr;
}
}
m_pLastAccessedChunk = pChunk;
m_v3dLastAccessedChunkX = uChunkX;
m_v3dLastAccessedChunkY = uChunkY;
m_v3dLastAccessedChunkZ = uChunkZ;
return pChunk;
return pChunk;
}
////////////////////////////////////////////////////////////////////////////////

View File

@ -30,12 +30,12 @@ namespace PolyVox
template <typename VoxelType>
PagedVolume<VoxelType>::Chunk::Chunk(Vector3DInt32 v3dPosition, uint16_t uSideLength, Pager* pPager)
:m_uChunkLastAccessed(0)
,m_bDataModified(true)
,m_tData(0)
,m_uSideLength(0)
,m_uSideLengthPower(0)
,m_pPager(pPager)
,m_v3dChunkSpacePosition(v3dPosition)
, m_bDataModified(true)
, m_tData(0)
, m_uSideLength(0)
, m_uSideLengthPower(0)
, m_pPager(pPager)
, m_v3dChunkSpacePosition(v3dPosition)
{
POLYVOX_ASSERT(m_pPager, "No valid pager supplied to chunk constructor.");
POLYVOX_ASSERT(uSideLength <= 256, "Chunk side length cannot be greater than 256.");
@ -46,7 +46,7 @@ namespace PolyVox
// Allocate the data
const uint32_t uNoOfVoxels = m_uSideLength * m_uSideLength * m_uSideLength;
m_tData = new VoxelType[uNoOfVoxels];
m_tData = new VoxelType[uNoOfVoxels];
// Pass the chunk to the Pager to give it a chance to initialise it with any data
// From the coordinates of the chunk we deduce the coordinates of the contained voxels.
@ -134,9 +134,9 @@ namespace PolyVox
template <typename VoxelType>
void PagedVolume<VoxelType>::Chunk::setVoxel(const Vector3DUint16& v3dPos, VoxelType tValue)
{
{
setVoxel(v3dPos.getX(), v3dPos.getY(), v3dPos.getZ(), tValue);
}
}
template <typename VoxelType>
uint32_t PagedVolume<VoxelType>::Chunk::calculateSizeInBytes(void)
@ -160,7 +160,7 @@ namespace PolyVox
// then the ordering is automatically handled correctly.
template <typename VoxelType>
void PagedVolume<VoxelType>::Chunk::changeLinearOrderingToMorton(void)
{
{
VoxelType* pTempBuffer = new VoxelType[m_uSideLength * m_uSideLength * m_uSideLength];
// We should prehaps restructure this loop. From: https://fgiesen.wordpress.com/2011/01/17/texture-tiling-and-swizzling/

View File

@ -107,7 +107,7 @@ namespace PolyVox
BaseVolume<VoxelType>::template Sampler< PagedVolume<VoxelType> >::movePositiveX();
// Then we update the voxel pointer
if(CAN_GO_POS_X(this->m_uXPosInChunk))
if (CAN_GO_POS_X(this->m_uXPosInChunk))
{
//No need to compute new chunk.
mCurrentVoxel += POS_X_DELTA;
@ -227,7 +227,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_X_DELTA + NEG_Y_DELTA + NEG_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume-1,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume - 1, this->mZPosInVolume - 1);
}
template <typename VoxelType>
@ -237,7 +237,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_X_DELTA + NEG_Y_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume-1,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume - 1, this->mZPosInVolume);
}
template <typename VoxelType>
@ -247,7 +247,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_X_DELTA + NEG_Y_DELTA + POS_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume-1,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume - 1, this->mZPosInVolume + 1);
}
template <typename VoxelType>
@ -257,7 +257,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_X_DELTA + NEG_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume, this->mZPosInVolume - 1);
}
template <typename VoxelType>
@ -267,7 +267,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_X_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume, this->mZPosInVolume);
}
template <typename VoxelType>
@ -277,7 +277,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_X_DELTA + POS_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume, this->mZPosInVolume + 1);
}
template <typename VoxelType>
@ -287,7 +287,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_X_DELTA + POS_Y_DELTA + NEG_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume+1,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume + 1, this->mZPosInVolume - 1);
}
template <typename VoxelType>
@ -297,7 +297,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_X_DELTA + POS_Y_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume+1,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume + 1, this->mZPosInVolume);
}
template <typename VoxelType>
@ -307,7 +307,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_X_DELTA + POS_Y_DELTA + POS_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume+1,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume + 1, this->mZPosInVolume + 1);
}
//////////////////////////////////////////////////////////////////////////
@ -319,7 +319,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_Y_DELTA + NEG_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume-1,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume - 1, this->mZPosInVolume - 1);
}
template <typename VoxelType>
@ -329,7 +329,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_Y_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume-1,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume - 1, this->mZPosInVolume);
}
template <typename VoxelType>
@ -339,7 +339,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_Y_DELTA + POS_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume-1,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume - 1, this->mZPosInVolume + 1);
}
template <typename VoxelType>
@ -349,7 +349,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + NEG_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume, this->mZPosInVolume - 1);
}
template <typename VoxelType>
@ -365,7 +365,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume, this->mZPosInVolume + 1);
}
template <typename VoxelType>
@ -375,7 +375,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_Y_DELTA + NEG_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume+1,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume + 1, this->mZPosInVolume - 1);
}
template <typename VoxelType>
@ -385,7 +385,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_Y_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume+1,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume + 1, this->mZPosInVolume);
}
template <typename VoxelType>
@ -395,7 +395,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_Y_DELTA + POS_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume+1,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume + 1, this->mZPosInVolume + 1);
}
//////////////////////////////////////////////////////////////////////////
@ -407,7 +407,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_X_DELTA + NEG_Y_DELTA + NEG_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume-1,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume - 1, this->mZPosInVolume - 1);
}
template <typename VoxelType>
@ -417,7 +417,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_X_DELTA + NEG_Y_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume-1,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume - 1, this->mZPosInVolume);
}
template <typename VoxelType>
@ -427,7 +427,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_X_DELTA + NEG_Y_DELTA + POS_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume-1,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume - 1, this->mZPosInVolume + 1);
}
template <typename VoxelType>
@ -437,7 +437,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_X_DELTA + NEG_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume, this->mZPosInVolume - 1);
}
template <typename VoxelType>
@ -447,7 +447,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_X_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume, this->mZPosInVolume);
}
template <typename VoxelType>
@ -457,7 +457,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_X_DELTA + POS_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume, this->mZPosInVolume + 1);
}
template <typename VoxelType>
@ -467,7 +467,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_X_DELTA + POS_Y_DELTA + NEG_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume+1,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume + 1, this->mZPosInVolume - 1);
}
template <typename VoxelType>
@ -477,7 +477,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_X_DELTA + POS_Y_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume+1,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume + 1, this->mZPosInVolume);
}
template <typename VoxelType>
@ -487,7 +487,7 @@ namespace PolyVox
{
return *(mCurrentVoxel + POS_X_DELTA + POS_Y_DELTA + POS_Z_DELTA);
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume+1,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume + 1, this->mZPosInVolume + 1);
}
}

View File

@ -39,7 +39,7 @@ namespace PolyVox
Vector3DInt32 hitVoxel; ///< The location of the solid voxel it hit
Vector3DInt32 previousVoxel; ///< The location of the voxel before the one it hit
};
/// Pick the first solid voxel along a vector
template<typename VolumeType>
PickResult pickVoxel(VolumeType* volData, const Vector3DFloat& v3dStart, const Vector3DFloat& v3dDirectionAndLength, const typename VolumeType::VoxelType& emptyVoxelExample);

View File

@ -26,13 +26,13 @@
namespace PolyVox
{
namespace
namespace
{
/**
* This is just an implementation class for the pickVoxel function
*
*
* It makes note of the sort of empty voxel you're looking for in the constructor.
*
*
* Each time the operator() is called:
* * if it's hit a voxel it sets up the result and returns false
* * otherwise it preps the result for the next iteration and returns true
@ -43,43 +43,43 @@ namespace PolyVox
public:
RaycastPickingFunctor(const typename VolumeType::VoxelType& emptyVoxelExample)
:m_emptyVoxelExample(emptyVoxelExample)
,m_result()
, m_result()
{
}
bool operator()(const typename VolumeType::Sampler& sampler)
{
if(sampler.getVoxel() != m_emptyVoxelExample) //If we've hit something
if (sampler.getVoxel() != m_emptyVoxelExample) //If we've hit something
{
m_result.didHit = true;
m_result.hitVoxel = sampler.getPosition();
return false;
}
m_result.previousVoxel = sampler.getPosition();
return true;
}
const typename VolumeType::VoxelType& m_emptyVoxelExample;
PickResult m_result;
};
}
/**
* \param volData The volume to pass the ray though
* \param v3dStart The start position in the volume
* \param v3dDirectionAndLength The direction and length of the ray
* \param emptyVoxelExample The value used to represent empty voxels in your volume
*
*
* \return A PickResult containing the hit information
*/
template<typename VolumeType>
PickResult pickVoxel(VolumeType* volData, const Vector3DFloat& v3dStart, const Vector3DFloat& v3dDirectionAndLength, const typename VolumeType::VoxelType& emptyVoxelExample)
{
RaycastPickingFunctor<VolumeType> functor(emptyVoxelExample);
raycastWithDirection(volData, v3dStart, v3dDirectionAndLength, functor);
return functor.m_result;
}
}

View File

@ -40,7 +40,7 @@ namespace PolyVox
class RawVolume : public BaseVolume<VoxelType>
{
public:
#ifndef SWIG
#ifndef SWIG
//There seems to be some descrepency between Visual Studio and GCC about how the following class should be declared.
//There is a work around (see also See http://goo.gl/qu1wn) given below which appears to work on VS2010 and GCC, but
//which seems to cause internal compiler errors on VS2008 when building with the /Gm 'Enable Minimal Rebuild' compiler
@ -51,7 +51,7 @@ namespace PolyVox
#if defined(_MSC_VER)
class Sampler : public BaseVolume<VoxelType>::Sampler< RawVolume<VoxelType> > //This line works on VS2010
#else
class Sampler : public BaseVolume<VoxelType>::template Sampler< RawVolume<VoxelType> > //This line works on GCC
class Sampler : public BaseVolume<VoxelType>::template Sampler< RawVolume<VoxelType> > //This line works on GCC
#endif
{
public:
@ -115,7 +115,7 @@ namespace PolyVox
bool m_bIsCurrentPositionValidInY;
bool m_bIsCurrentPositionValidInZ;
};
#endif // SWIG
#endif // SWIG
public:
/// Constructor for creating a fixed size volume.

View File

@ -34,10 +34,10 @@ namespace PolyVox
, m_regValidRegion(regValid)
, m_tBorderValue()
{
this->setBorderValue(VoxelType());
this->setBorderValue(VoxelType());
//Create a volume of the right size.
initialise(regValid);
//Create a volume of the right size.
initialise(regValid);
}
////////////////////////////////////////////////////////////////////////////////
@ -145,11 +145,11 @@ namespace PolyVox
int32_t iLocalZPos = uZPos - regValidRegion.getLowerZ();
return m_pData
[
iLocalXPos +
iLocalYPos * this->getWidth() +
iLocalZPos * this->getWidth() * this->getHeight()
];
[
iLocalXPos +
iLocalYPos * this->getWidth() +
iLocalZPos * this->getWidth() * this->getHeight()
];
}
else
{
@ -198,11 +198,11 @@ namespace PolyVox
int32_t iLocalZPos = uZPos - v3dLowerCorner.getZ();
m_pData
[
iLocalXPos +
iLocalYPos * this->getWidth() +
iLocalZPos * this->getWidth() * this->getHeight()
] = tValue;
[
iLocalXPos +
iLocalYPos * this->getWidth() +
iLocalZPos * this->getWidth() * this->getHeight()
] = tValue;
}
////////////////////////////////////////////////////////////////////////////////
@ -223,15 +223,15 @@ namespace PolyVox
{
this->m_regValidRegion = regValidRegion;
if(this->getWidth() <= 0)
if (this->getWidth() <= 0)
{
POLYVOX_THROW(std::invalid_argument, "Volume width must be greater than zero.");
}
if(this->getHeight() <= 0)
if (this->getHeight() <= 0)
{
POLYVOX_THROW(std::invalid_argument, "Volume height must be greater than zero.");
}
if(this->getDepth() <= 0)
if (this->getDepth() <= 0)
{
POLYVOX_THROW(std::invalid_argument, "Volume depth must be greater than zero.");
}

View File

@ -34,7 +34,7 @@ namespace PolyVox
template <typename VoxelType>
RawVolume<VoxelType>::Sampler::Sampler(RawVolume<VoxelType>* volume)
:BaseVolume<VoxelType>::template Sampler< RawVolume<VoxelType> >(volume)
,mCurrentVoxel(0)
, mCurrentVoxel(0)
, m_bIsCurrentPositionValidInX(false)
, m_bIsCurrentPositionValidInY(false)
, m_bIsCurrentPositionValidInZ(false)
@ -49,7 +49,7 @@ namespace PolyVox
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::getVoxel(void) const
{
if(this->isCurrentPositionValid())
if (this->isCurrentPositionValid())
{
return *mCurrentVoxel;
}
@ -82,16 +82,16 @@ namespace PolyVox
m_bIsCurrentPositionValidInZ = this->mVolume->getEnclosingRegion().containsPointInZ(zPos);
// Then we update the voxel pointer
if(this->isCurrentPositionValid())
if (this->isCurrentPositionValid())
{
const Vector3DInt32& v3dLowerCorner = this->mVolume->m_regValidRegion.getLowerCorner();
int32_t iLocalXPos = xPos - v3dLowerCorner.getX();
int32_t iLocalYPos = yPos - v3dLowerCorner.getY();
int32_t iLocalZPos = zPos - v3dLowerCorner.getZ();
const int32_t uVoxelIndex = iLocalXPos +
iLocalYPos * this->mVolume->getWidth() +
iLocalZPos * this->mVolume->getWidth() * this->mVolume->getHeight();
const int32_t uVoxelIndex = iLocalXPos +
iLocalYPos * this->mVolume->getWidth() +
iLocalZPos * this->mVolume->getWidth() * this->mVolume->getHeight();
mCurrentVoxel = this->mVolume->m_pData + uVoxelIndex;
}
@ -105,7 +105,7 @@ namespace PolyVox
bool RawVolume<VoxelType>::Sampler::setVoxel(VoxelType tValue)
{
//return m_bIsCurrentPositionValid ? *mCurrentVoxel : this->mVolume->getBorderValue();
if(this->m_bIsCurrentPositionValidInX && this->m_bIsCurrentPositionValidInY && this->m_bIsCurrentPositionValidInZ)
if (this->m_bIsCurrentPositionValidInX && this->m_bIsCurrentPositionValidInY && this->m_bIsCurrentPositionValidInZ)
{
*mCurrentVoxel = tValue;
return true;
@ -128,7 +128,7 @@ namespace PolyVox
m_bIsCurrentPositionValidInX = this->mVolume->getEnclosingRegion().containsPointInX(this->mXPosInVolume);
// Then we update the voxel pointer
if(this->isCurrentPositionValid() && bIsOldPositionValid )
if (this->isCurrentPositionValid() && bIsOldPositionValid)
{
++mCurrentVoxel;
}
@ -150,7 +150,7 @@ namespace PolyVox
m_bIsCurrentPositionValidInY = this->mVolume->getEnclosingRegion().containsPointInY(this->mYPosInVolume);
// Then we update the voxel pointer
if(this->isCurrentPositionValid() && bIsOldPositionValid )
if (this->isCurrentPositionValid() && bIsOldPositionValid)
{
mCurrentVoxel += this->mVolume->getWidth();
}
@ -172,7 +172,7 @@ namespace PolyVox
m_bIsCurrentPositionValidInZ = this->mVolume->getEnclosingRegion().containsPointInZ(this->mZPosInVolume);
// Then we update the voxel pointer
if(this->isCurrentPositionValid() && bIsOldPositionValid )
if (this->isCurrentPositionValid() && bIsOldPositionValid)
{
mCurrentVoxel += this->mVolume->getWidth() * this->mVolume->getHeight();
}
@ -194,7 +194,7 @@ namespace PolyVox
m_bIsCurrentPositionValidInX = this->mVolume->getEnclosingRegion().containsPointInX(this->mXPosInVolume);
// Then we update the voxel pointer
if(this->isCurrentPositionValid() && bIsOldPositionValid )
if (this->isCurrentPositionValid() && bIsOldPositionValid)
{
--mCurrentVoxel;
}
@ -216,7 +216,7 @@ namespace PolyVox
m_bIsCurrentPositionValidInY = this->mVolume->getEnclosingRegion().containsPointInY(this->mYPosInVolume);
// Then we update the voxel pointer
if(this->isCurrentPositionValid() && bIsOldPositionValid )
if (this->isCurrentPositionValid() && bIsOldPositionValid)
{
mCurrentVoxel -= this->mVolume->getWidth();
}
@ -238,7 +238,7 @@ namespace PolyVox
m_bIsCurrentPositionValidInZ = this->mVolume->getEnclosingRegion().containsPointInZ(this->mZPosInVolume);
// Then we update the voxel pointer
if(this->isCurrentPositionValid() && bIsOldPositionValid )
if (this->isCurrentPositionValid() && bIsOldPositionValid)
{
mCurrentVoxel -= this->mVolume->getWidth() * this->mVolume->getHeight();
}
@ -251,91 +251,91 @@ namespace PolyVox
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1nx1ny1nz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_NEG_Y(this->mYPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_NEG_Y(this->mYPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel - 1 - this->mVolume->getWidth() - this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume-1,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume - 1, this->mZPosInVolume - 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1nx1ny0pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_NEG_Y(this->mYPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_NEG_Y(this->mYPosInVolume))
{
return *(mCurrentVoxel - 1 - this->mVolume->getWidth());
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume-1,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume - 1, this->mZPosInVolume);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1nx1ny1pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_NEG_Y(this->mYPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_NEG_Y(this->mYPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel - 1 - this->mVolume->getWidth() + this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume-1,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume - 1, this->mZPosInVolume + 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1nx0py1nz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel - 1 - this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume, this->mZPosInVolume - 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1nx0py0pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume))
{
return *(mCurrentVoxel - 1);
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume, this->mZPosInVolume);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1nx0py1pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel - 1 + this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume, this->mZPosInVolume + 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1nx1py1nz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_POS_Y(this->mYPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_POS_Y(this->mYPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel - 1 + this->mVolume->getWidth() - this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume+1,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume + 1, this->mZPosInVolume - 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1nx1py0pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_POS_Y(this->mYPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_POS_Y(this->mYPosInVolume))
{
return *(mCurrentVoxel - 1 + this->mVolume->getWidth());
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume+1,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume + 1, this->mZPosInVolume);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1nx1py1pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_POS_Y(this->mYPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_X(this->mXPosInVolume) && CAN_GO_POS_Y(this->mYPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel - 1 + this->mVolume->getWidth() + this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume-1,this->mYPosInVolume+1,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume - 1, this->mYPosInVolume + 1, this->mZPosInVolume + 1);
}
//////////////////////////////////////////////////////////////////////////
@ -343,47 +343,47 @@ namespace PolyVox
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel0px1ny1nz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_Y(this->mYPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_Y(this->mYPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel - this->mVolume->getWidth() - this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume-1,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume - 1, this->mZPosInVolume - 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel0px1ny0pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_Y(this->mYPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_Y(this->mYPosInVolume))
{
return *(mCurrentVoxel - this->mVolume->getWidth());
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume-1,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume - 1, this->mZPosInVolume);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel0px1ny1pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_Y(this->mYPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_Y(this->mYPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel - this->mVolume->getWidth() + this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume-1,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume - 1, this->mZPosInVolume + 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel0px0py1nz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_NEG_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_NEG_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel - this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume, this->mZPosInVolume - 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel0px0py0pz(void) const
{
if((this->isCurrentPositionValid()))
if ((this->isCurrentPositionValid()))
{
return *mCurrentVoxel;
}
@ -393,41 +393,41 @@ namespace PolyVox
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel0px0py1pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel + this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume, this->mZPosInVolume + 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel0px1py1nz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_Y(this->mYPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_Y(this->mYPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel + this->mVolume->getWidth() - this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume+1,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume + 1, this->mZPosInVolume - 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel0px1py0pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_Y(this->mYPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_Y(this->mYPosInVolume))
{
return *(mCurrentVoxel + this->mVolume->getWidth());
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume+1,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume + 1, this->mZPosInVolume);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel0px1py1pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_Y(this->mYPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_Y(this->mYPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel + this->mVolume->getWidth() + this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume,this->mYPosInVolume+1,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume, this->mYPosInVolume + 1, this->mZPosInVolume + 1);
}
//////////////////////////////////////////////////////////////////////////
@ -435,91 +435,91 @@ namespace PolyVox
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1px1ny1nz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_NEG_Y(this->mYPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_NEG_Y(this->mYPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel + 1 - this->mVolume->getWidth() - this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume-1,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume - 1, this->mZPosInVolume - 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1px1ny0pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_NEG_Y(this->mYPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_NEG_Y(this->mYPosInVolume))
{
return *(mCurrentVoxel + 1 - this->mVolume->getWidth());
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume-1,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume - 1, this->mZPosInVolume);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1px1ny1pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_NEG_Y(this->mYPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_NEG_Y(this->mYPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel + 1 - this->mVolume->getWidth() + this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume-1,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume - 1, this->mZPosInVolume + 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1px0py1nz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel + 1 - this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume, this->mZPosInVolume - 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1px0py0pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume))
{
return *(mCurrentVoxel + 1);
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume, this->mZPosInVolume);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1px0py1pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel + 1 + this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume, this->mZPosInVolume + 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1px1py1nz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_POS_Y(this->mYPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_POS_Y(this->mYPosInVolume) && CAN_GO_NEG_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel + 1 + this->mVolume->getWidth() - this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume+1,this->mZPosInVolume-1);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume + 1, this->mZPosInVolume - 1);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1px1py0pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_POS_Y(this->mYPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_POS_Y(this->mYPosInVolume))
{
return *(mCurrentVoxel + 1 + this->mVolume->getWidth());
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume+1,this->mZPosInVolume);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume + 1, this->mZPosInVolume);
}
template <typename VoxelType>
VoxelType RawVolume<VoxelType>::Sampler::peekVoxel1px1py1pz(void) const
{
if((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_POS_Y(this->mYPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume) )
if ((this->isCurrentPositionValid()) && CAN_GO_POS_X(this->mXPosInVolume) && CAN_GO_POS_Y(this->mYPosInVolume) && CAN_GO_POS_Z(this->mZPosInVolume))
{
return *(mCurrentVoxel + 1 + this->mVolume->getWidth() + this->mVolume->getWidth() * this->mVolume->getHeight());
}
return this->mVolume->getVoxel(this->mXPosInVolume+1,this->mYPosInVolume+1,this->mZPosInVolume+1);
return this->mVolume->getVoxel(this->mXPosInVolume + 1, this->mYPosInVolume + 1, this->mZPosInVolume + 1);
}
}

View File

@ -53,20 +53,20 @@ namespace PolyVox
// It should simply read "if (ty <= tz)".
//
// This error was reported by Joey Hammer (PixelActive).
/**
* Cast a ray through a volume by specifying the start and end positions
*
*
* The ray will move from \a v3dStart to \a v3dEnd, calling \a callback for each
* voxel it passes through until \a callback returns \a false. In this case it
* returns a RaycastResults::Interupted. If it passes from start to end
* without \a callback returning \a false, it returns RaycastResults::Completed.
*
*
* \param volData The volume to pass the ray though
* \param v3dStart The start position in the volume
* \param v3dEnd The end position in the volume
* \param callback The callback to call for each voxel
*
*
* \return A RaycastResults designating whether the ray hit anything or not
*/
template<typename VolumeType, typename Callback>
@ -83,7 +83,7 @@ namespace PolyVox
const float x2 = v3dEnd.getX() + 0.5f;
const float y2 = v3dEnd.getY() + 0.5f;
const float z2 = v3dEnd.getZ() + 0.5f;
int i = (int)floorf(x1);
int j = (int)floorf(y1);
int k = (int)floorf(z1);
@ -107,39 +107,41 @@ namespace PolyVox
const float minz = floorf(z1), maxz = minz + 1.0f;
float tz = ((z1 > z2) ? (z1 - minz) : (maxz - z1)) * deltatz;
sampler.setPosition(i,j,k);
sampler.setPosition(i, j, k);
for(;;)
for (;;)
{
if(!callback(sampler))
if (!callback(sampler))
{
return RaycastResults::Interupted;
}
if(tx <= ty && tx <= tz)
if (tx <= ty && tx <= tz)
{
if(i == iend) break;
if (i == iend) break;
tx += deltatx;
i += di;
if(di == 1) sampler.movePositiveX();
if(di == -1) sampler.moveNegativeX();
} else if (ty <= tz)
if (di == 1) sampler.movePositiveX();
if (di == -1) sampler.moveNegativeX();
}
else if (ty <= tz)
{
if(j == jend) break;
if (j == jend) break;
ty += deltaty;
j += dj;
if(dj == 1) sampler.movePositiveY();
if(dj == -1) sampler.moveNegativeY();
} else
if (dj == 1) sampler.movePositiveY();
if (dj == -1) sampler.moveNegativeY();
}
else
{
if(k == kend) break;
if (k == kend) break;
tz += deltatz;
k += dk;
if(dk == 1) sampler.movePositiveZ();
if(dk == -1) sampler.moveNegativeZ();
if (dk == 1) sampler.movePositiveZ();
if (dk == -1) sampler.moveNegativeZ();
}
}
@ -148,13 +150,13 @@ namespace PolyVox
/**
* Cast a ray through a volume by specifying the start and a direction
*
* The ray will move from \a v3dStart along \a v3dDirectionAndLength, calling
* \a callback for each voxel it passes through until \a callback returns
* \a false. In this case it returns a RaycastResults::Interupted. If it
* passes from start to end without \a callback returning \a false, it
*
* The ray will move from \a v3dStart along \a v3dDirectionAndLength, calling
* \a callback for each voxel it passes through until \a callback returns
* \a false. In this case it returns a RaycastResults::Interupted. If it
* passes from start to end without \a callback returning \a false, it
* returns RaycastResults::Completed.
*
*
* \note These has been confusion in the past with people not realising
* that the length of the direction vector is important. Most graphics API can provide
* a camera position and view direction for picking purposes, but the view direction is
@ -162,12 +164,12 @@ namespace PolyVox
* will only iterate over a single voxel and won't find what you are looking for. Instead
* you must scale the direction vector so that it's length represents the maximum distance
* over which you want the ray to be cast.
*
*
* \param volData The volume to pass the ray though
* \param v3dStart The start position in the volume
* \param v3dDirectionAndLength The direction and length of the ray
* \param callback The callback to call for each voxel
*
*
* \return A RaycastResults designating whether the ray hit anything or not
*/
template<typename VolumeType, typename Callback>

View File

@ -32,23 +32,23 @@
namespace PolyVox
{
/** Represents a part of a Volume.
*
* Many operations in PolyVox are constrained to only part of a volume. For example, when running the surface extractors
* it is unlikely that you will want to run it on the whole volume at once, as this will give a very large mesh which may
* be too much to render. Instead you will probably want to run a surface extractor a number of times on different parts
*
* Many operations in PolyVox are constrained to only part of a volume. For example, when running the surface extractors
* it is unlikely that you will want to run it on the whole volume at once, as this will give a very large mesh which may
* be too much to render. Instead you will probably want to run a surface extractor a number of times on different parts
* of the volume, there by giving a number of meshes which can be culled and rendered seperately.
*
* The Region class is used to define these parts (regions) of the volume. Essentially it consists of an upper and lower
* bound which specify the range of voxels positions considered to be part of the region. Note that these bounds are
*
* The Region class is used to define these parts (regions) of the volume. Essentially it consists of an upper and lower
* bound which specify the range of voxels positions considered to be part of the region. Note that these bounds are
* <em>inclusive</em>.
*
*
* As well as the expected set of getters and setters, this class also provide utility functions for increasing and decresing
* the size of the Region, shifting the Region in 3D space, testing whether it contains a given position, enlarging it so that
* it does contain a given position, croppng it to another Region, and various other utility functions.
*
* \Note The dimensions of a region can be measured either in voxels or in cells. See the manual for more information
*
* \Note The dimensions of a region can be measured either in voxels or in cells. See the manual for more information
* about these definitions.
*
*
*/
class Region
{
@ -67,9 +67,9 @@ namespace PolyVox
Region(int32_t iLowerX, int32_t iLowerY, int32_t iLowerZ, int32_t iUpperX, int32_t iUpperY, int32_t iUpperZ);
/// Equality Operator.
bool operator==(const Region& rhs) const;
bool operator==(const Region& rhs) const;
/// Inequality Operator.
bool operator!=(const Region& rhs) const;
bool operator!=(const Region& rhs) const;
/// Gets the 'x' position of the centre.
int32_t getCentreX(void) const;
@ -189,7 +189,7 @@ namespace PolyVox
/// Moves the upper corner of the Region by the amount specified.
void shiftUpperCorner(int32_t iAmountX, int32_t iAmountY, int32_t iAmountZ);
/// Moves the upper corner of the Region by the amount specified.
void shiftUpperCorner(const Vector3DInt32& v3dAmount);
void shiftUpperCorner(const Vector3DInt32& v3dAmount);
/// Shrinks this region by the amount specified.
void shrink(int32_t iAmount);

View File

@ -80,10 +80,10 @@ namespace PolyVox
*/
inline void Region::accumulate(const Region& reg)
{
if(!reg.isValid())
if (!reg.isValid())
{
POLYVOX_THROW(invalid_operation, "You cannot accumulate an invalid region."); //The result of accumulating an invalid region is not defined.
}
}
m_iLowerX = ((std::min)(m_iLowerX, reg.getLowerX()));
m_iLowerY = ((std::min)(m_iLowerY, reg.getLowerY()));
@ -98,11 +98,11 @@ namespace PolyVox
*/
inline Region::Region()
:m_iLowerX(0)
,m_iLowerY(0)
,m_iLowerZ(0)
,m_iUpperX(0)
,m_iUpperY(0)
,m_iUpperZ(0)
, m_iLowerY(0)
, m_iLowerZ(0)
, m_iUpperX(0)
, m_iUpperY(0)
, m_iUpperZ(0)
{
}
@ -113,11 +113,11 @@ namespace PolyVox
*/
inline Region::Region(const Vector3DInt32& v3dLowerCorner, const Vector3DInt32& v3dUpperCorner)
:m_iLowerX(v3dLowerCorner.getX())
,m_iLowerY(v3dLowerCorner.getY())
,m_iLowerZ(v3dLowerCorner.getZ())
,m_iUpperX(v3dUpperCorner.getX())
,m_iUpperY(v3dUpperCorner.getY())
,m_iUpperZ(v3dUpperCorner.getZ())
, m_iLowerY(v3dLowerCorner.getY())
, m_iLowerZ(v3dLowerCorner.getZ())
, m_iUpperX(v3dUpperCorner.getX())
, m_iUpperY(v3dUpperCorner.getY())
, m_iUpperZ(v3dUpperCorner.getZ())
{
}
@ -132,11 +132,11 @@ namespace PolyVox
*/
inline Region::Region(int32_t iLowerX, int32_t iLowerY, int32_t iLowerZ, int32_t iUpperX, int32_t iUpperY, int32_t iUpperZ)
:m_iLowerX(iLowerX)
,m_iLowerY(iLowerY)
,m_iLowerZ(iLowerZ)
,m_iUpperX(iUpperX)
,m_iUpperY(iUpperY)
,m_iUpperZ(iUpperZ)
, m_iLowerY(iLowerY)
, m_iLowerZ(iLowerZ)
, m_iUpperX(iUpperX)
, m_iUpperY(iUpperY)
, m_iUpperZ(iUpperZ)
{
}
@ -147,25 +147,25 @@ namespace PolyVox
* \sa operator!=
*/
inline bool Region::operator==(const Region& rhs) const
{
{
return ((m_iLowerX == rhs.m_iLowerX) && (m_iLowerY == rhs.m_iLowerY) && (m_iLowerZ == rhs.m_iLowerZ)
&& (m_iUpperX == rhs.m_iUpperX) && (m_iUpperY == rhs.m_iUpperY) && (m_iUpperZ == rhs.m_iUpperZ));
}
&& (m_iUpperX == rhs.m_iUpperX) && (m_iUpperY == rhs.m_iUpperY) && (m_iUpperZ == rhs.m_iUpperZ));
}
/**
* Two regions are considered different if any of their extents differ.
* \param rhs The Region to compare to.
* \return true if the Regions are different.
* \sa operator==
* \return true if the Regions are different.
* \sa operator==
*/
inline bool Region::operator!=(const Region& rhs) const
{
{
return !(*this == rhs);
}
}
/**
* The boundary value can be used to ensure a position is only considered to be inside
* the Region if it is that far in in all directions. Also, the test is inclusive such
* the Region if it is that far in in all directions. Also, the test is inclusive such
* that positions lying exactly on the edge of the Region are considered to be inside it.
* \param fX The 'x' position of the point to test.
* \param fY The 'y' position of the point to test.
@ -184,7 +184,7 @@ namespace PolyVox
/**
* The boundary value can be used to ensure a position is only considered to be inside
* the Region if it is that far in in all directions. Also, the test is inclusive such
* the Region if it is that far in in all directions. Also, the test is inclusive such
* that positions lying exactly on the edge of the Region are considered to be inside it.
* \param pos The position to test.
* \param boundary The desired boundary value.
@ -196,7 +196,7 @@ namespace PolyVox
/**
* The boundary value can be used to ensure a position is only considered to be inside
* the Region if it is that far in in all directions. Also, the test is inclusive such
* the Region if it is that far in in all directions. Also, the test is inclusive such
* that positions lying exactly on the edge of the Region are considered to be inside it.
* \param iX The 'x' position of the point to test.
* \param iY The 'y' position of the point to test.
@ -206,7 +206,7 @@ namespace PolyVox
inline bool Region::containsPoint(int32_t iX, int32_t iY, int32_t iZ, uint8_t boundary) const
{
return (iX <= m_iUpperX - boundary)
&& (iY <= m_iUpperY - boundary)
&& (iY <= m_iUpperY - boundary)
&& (iZ <= m_iUpperZ - boundary)
&& (iX >= m_iLowerX + boundary)
&& (iY >= m_iLowerY + boundary)
@ -215,7 +215,7 @@ namespace PolyVox
/**
* The boundary value can be used to ensure a position is only considered to be inside
* the Region if it is that far in in all directions. Also, the test is inclusive such
* the Region if it is that far in in all directions. Also, the test is inclusive such
* that positions lying exactly on the edge of the Region are considered to be inside it.
* \param pos The position to test.
* \param boundary The desired boundary value.
@ -227,7 +227,7 @@ namespace PolyVox
/**
* The boundary value can be used to ensure a position is only considered to be inside
* the Region if it is that far in in the 'x' direction. Also, the test is inclusive such
* the Region if it is that far in in the 'x' direction. Also, the test is inclusive such
* that positions lying exactly on the edge of the Region are considered to be inside it.
* \param pos The position to test.
* \param boundary The desired boundary value.
@ -240,7 +240,7 @@ namespace PolyVox
/**
* The boundary value can be used to ensure a position is only considered to be inside
* the Region if it is that far in in the 'x' direction. Also, the test is inclusive such
* the Region if it is that far in in the 'x' direction. Also, the test is inclusive such
* that positions lying exactly on the edge of the Region are considered to be inside it.
* \param pos The position to test.
* \param boundary The desired boundary value.
@ -253,7 +253,7 @@ namespace PolyVox
/**
* The boundary value can be used to ensure a position is only considered to be inside
* the Region if it is that far in in the 'y' direction. Also, the test is inclusive such
* the Region if it is that far in in the 'y' direction. Also, the test is inclusive such
* that positions lying exactly on the edge of the Region are considered to be inside it.
* \param pos The position to test.
* \param boundary The desired boundary value.
@ -266,20 +266,20 @@ namespace PolyVox
/**
* The boundary value can be used to ensure a position is only considered to be inside
* the Region if it is that far in in the 'y' direction. Also, the test is inclusive such
* the Region if it is that far in in the 'y' direction. Also, the test is inclusive such
* that positions lying exactly on the edge of the Region are considered to be inside it.
* \param pos The position to test.
* \param boundary The desired boundary value.
*/
inline bool Region::containsPointInY(int32_t pos, uint8_t boundary) const
{
return (pos <= m_iUpperY - boundary)
return (pos <= m_iUpperY - boundary)
&& (pos >= m_iLowerY + boundary);
}
/**
* The boundary value can be used to ensure a position is only considered to be inside
* the Region if it is that far in in the 'z' direction. Also, the test is inclusive such
* the Region if it is that far in in the 'z' direction. Also, the test is inclusive such
* that positions lying exactly on the edge of the Region are considered to be inside it.
* \param pos The position to test.
* \param boundary The desired boundary value.
@ -292,7 +292,7 @@ namespace PolyVox
/**
* The boundary value can be used to ensure a position is only considered to be inside
* the Region if it is that far in in the 'z' direction. Also, the test is inclusive such
* the Region if it is that far in in the 'z' direction. Also, the test is inclusive such
* that positions lying exactly on the edge of the Region are considered to be inside it.
* \param pos The position to test.
* \param boundary The desired boundary value.
@ -305,7 +305,7 @@ namespace PolyVox
/**
* The boundary value can be used to ensure a region is only considered to be inside
* another Region if it is that far in in all directions. Also, the test is inclusive such
* another Region if it is that far in in all directions. Also, the test is inclusive such
* that a region is considered to be inside of itself.
* \param reg The region to test.
* \param boundary The desired boundary value.
@ -313,7 +313,7 @@ namespace PolyVox
inline bool Region::containsRegion(const Region& reg, uint8_t boundary) const
{
return (reg.m_iUpperX <= m_iUpperX - boundary)
&& (reg.m_iUpperY <= m_iUpperY - boundary)
&& (reg.m_iUpperY <= m_iUpperY - boundary)
&& (reg.m_iUpperZ <= m_iUpperZ - boundary)
&& (reg.m_iLowerX >= m_iLowerX + boundary)
&& (reg.m_iLowerY >= m_iLowerY + boundary)
@ -496,24 +496,24 @@ namespace PolyVox
inline bool intersects(const Region& a, const Region& b)
{
// No intersection if seperated along an axis.
if(a.getUpperX() < b.getLowerX() || a.getLowerX() > b.getUpperX()) return false;
if(a.getUpperY() < b.getLowerY() || a.getLowerY() > b.getUpperY()) return false;
if(a.getUpperZ() < b.getLowerZ() || a.getLowerZ() > b.getUpperZ()) return false;
if (a.getUpperX() < b.getLowerX() || a.getLowerX() > b.getUpperX()) return false;
if (a.getUpperY() < b.getLowerY() || a.getLowerY() > b.getUpperY()) return false;
if (a.getUpperZ() < b.getLowerZ() || a.getLowerZ() > b.getUpperZ()) return false;
// Overlapping on all axes means Regions are intersecting.
return true;
}
/**
* Enables the Region to be used intuitively with output streams such as cout.
* \param os The output stream to write to.
* \param region The Region to write to the stream.
* \return A reference to the output stream to allow chaining.
*/
* Enables the Region to be used intuitively with output streams such as cout.
* \param os The output stream to write to.
* \param region The Region to write to the stream.
* \return A reference to the output stream to allow chaining.
*/
inline std::ostream& operator<<(std::ostream& os, const Region& region)
{
{
os << "(" << region.getLowerX() << "," << region.getLowerY() << "," << region.getLowerZ() <<
") to (" << region.getUpperX() << "," << region.getUpperY() << "," << region.getUpperZ() << ")";
return os;
}
return os;
}
}

View File

@ -39,7 +39,7 @@ namespace PolyVox
{
/**
* Represents a vector in space.
*
*
* This is a generl purpose vector class designed to represent both positions and directions. It is templatised
* on both size and data type but note that some of the operations do not make sense with integer types. For
* example it does not make conceptual sense to try and normalise an integer Vector.
@ -48,7 +48,7 @@ namespace PolyVox
* X, Y, Z and W elements. Note that W is last even though it comes before X in the alphabet. These elements can
* be accessed through getX(), setX(), getY(), setY(), getZ(), setZ(), getW() and setW(), while other elements
* can be accessed through getElemen() and setElement().
*
*
* This class includes a number of common mathematical operations (addition, subtraction, etc) as well as vector
* specific operations such as the dot and cross products. Note that this class is also templatised on an
* OperationType which is used for many internal calculations and some results. For example, the square of a
@ -58,66 +58,66 @@ namespace PolyVox
*
* Typedefs are provided for 2, 3 and 4 dimensional vector with int8_t, uint8_t, int16_t, uint6_t, int32_t,
* uint32_t, float and double types. These typedefs are used as follows:
*
*
* \code
* Vector2DInt32 test(1,2); //Declares a 2 dimensional Vector of type int32_t.
* \endcode
*/
template <uint32_t Size, typename StorageType, typename OperationType = StorageType>
class Vector
{
public:
{
public:
/// Constructor
Vector(void);
/// Constructor.
Vector(StorageType tFillValue);
/// Constructor.
Vector(StorageType x, StorageType y);
Vector(StorageType tFillValue);
/// Constructor.
Vector(StorageType x, StorageType y);
/// Constructor.
Vector(StorageType x, StorageType y, StorageType z);
/// Constructor.
Vector(StorageType x, StorageType y, StorageType z, StorageType w);
/// Copy Constructor.
Vector(const Vector<Size,StorageType,OperationType>& vector);
/// Copy Constructor.
Vector(const Vector<Size, StorageType, OperationType>& vector);
/// Copy Constructor which performs casting.
template <typename CastType> explicit Vector(const Vector<Size,CastType>& vector);
/// Destructor.
~Vector(void);
template <typename CastType> explicit Vector(const Vector<Size, CastType>& vector);
/// Destructor.
~Vector(void);
/// Assignment Operator.
Vector<Size,StorageType,OperationType>& operator=(const Vector<Size,StorageType,OperationType>& rhs);
/// Equality Operator.
bool operator==(const Vector<Size,StorageType,OperationType>& rhs) const;
/// Assignment Operator.
Vector<Size, StorageType, OperationType>& operator=(const Vector<Size, StorageType, OperationType>& rhs);
/// Equality Operator.
bool operator==(const Vector<Size, StorageType, OperationType>& rhs) const;
/// Inequality Operator.
bool operator!=(const Vector<Size,StorageType,OperationType>& rhs) const;
/// Addition and Assignment Operator.
Vector<Size,StorageType,OperationType>& operator+=(const Vector<Size,StorageType,OperationType> &rhs);
/// Subtraction and Assignment Operator.
Vector<Size,StorageType,OperationType>& operator-=(const Vector<Size,StorageType,OperationType> &rhs);
bool operator!=(const Vector<Size, StorageType, OperationType>& rhs) const;
/// Addition and Assignment Operator.
Vector<Size, StorageType, OperationType>& operator+=(const Vector<Size, StorageType, OperationType> &rhs);
/// Subtraction and Assignment Operator.
Vector<Size, StorageType, OperationType>& operator-=(const Vector<Size, StorageType, OperationType> &rhs);
/// Multiplication and Assignment Operator.
Vector<Size,StorageType,OperationType>& operator*=(const Vector<Size,StorageType,OperationType> &rhs);
/// Division and Assignment Operator.
Vector<Size,StorageType,OperationType>& operator/=(const Vector<Size,StorageType,OperationType> &rhs);
/// Multiplication and Assignment Operator.
Vector<Size,StorageType,OperationType>& operator*=(const StorageType& rhs);
/// Division and Assignment Operator.
Vector<Size,StorageType,OperationType>& operator/=(const StorageType& rhs);
Vector<Size, StorageType, OperationType>& operator*=(const Vector<Size, StorageType, OperationType> &rhs);
/// Division and Assignment Operator.
Vector<Size, StorageType, OperationType>& operator/=(const Vector<Size, StorageType, OperationType> &rhs);
/// Multiplication and Assignment Operator.
Vector<Size, StorageType, OperationType>& operator*=(const StorageType& rhs);
/// Division and Assignment Operator.
Vector<Size, StorageType, OperationType>& operator/=(const StorageType& rhs);
/// Element Access.
StorageType getElement(uint32_t index) const;
/// Get the x component of the vector.
StorageType getX(void) const;
/// Get the y component of the vector.
StorageType getY(void) const;
/// Get the z component of the vector.
StorageType getZ(void) const;
/// Get the x component of the vector.
StorageType getX(void) const;
/// Get the y component of the vector.
StorageType getY(void) const;
/// Get the z component of the vector.
StorageType getZ(void) const;
/// Get the w component of the vector.
StorageType getW(void) const;
StorageType getW(void) const;
/// Element Access.
void setElement(uint32_t index, StorageType tValue);
/// Element Access.
void setElements(StorageType x, StorageType y);
void setElements(StorageType x, StorageType y);
/// Element Access.
void setElements(StorageType x, StorageType y, StorageType z);
/// Element Access.
@ -131,99 +131,99 @@ namespace PolyVox
/// Set the w component of the vector.
void setW(StorageType tW);
/// Get the length of the vector.
float length(void) const;
/// Get the squared length of the vector.
OperationType lengthSquared(void) const;
/// Find the angle between this vector and that which is passed as a parameter.
float angleTo(const Vector<Size,StorageType,OperationType>& vector) const;
/// Find the cross product between this vector and the vector passed as a parameter.
Vector<Size,StorageType,OperationType> cross(const Vector<Size,StorageType,OperationType>& vector) const;
/// Find the dot product between this vector and the vector passed as a parameter.
OperationType dot(const Vector<Size,StorageType,OperationType>& rhs) const;
/// Normalise the vector.
void normalise(void);
/// Get the length of the vector.
float length(void) const;
/// Get the squared length of the vector.
OperationType lengthSquared(void) const;
/// Find the angle between this vector and that which is passed as a parameter.
float angleTo(const Vector<Size, StorageType, OperationType>& vector) const;
/// Find the cross product between this vector and the vector passed as a parameter.
Vector<Size, StorageType, OperationType> cross(const Vector<Size, StorageType, OperationType>& vector) const;
/// Find the dot product between this vector and the vector passed as a parameter.
OperationType dot(const Vector<Size, StorageType, OperationType>& rhs) const;
/// Normalise the vector.
void normalise(void);
private:
// Values for the vector
private:
// Values for the vector
StorageType m_tElements[Size];
};
};
// Non-member overloaded operators.
// Non-member overloaded operators.
/// Addition operator.
template <uint32_t Size,typename StorageType,typename OperationType>
Vector<Size,StorageType,OperationType> operator+(const Vector<Size,StorageType,OperationType>& lhs, const Vector<Size,StorageType,OperationType>& rhs);
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType> operator+(const Vector<Size, StorageType, OperationType>& lhs, const Vector<Size, StorageType, OperationType>& rhs);
/// Subtraction operator.
template <uint32_t Size,typename StorageType,typename OperationType>
Vector<Size,StorageType,OperationType> operator-(const Vector<Size,StorageType,OperationType>& lhs, const Vector<Size,StorageType,OperationType>& rhs);
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType> operator-(const Vector<Size, StorageType, OperationType>& lhs, const Vector<Size, StorageType, OperationType>& rhs);
/// Multiplication operator.
template <uint32_t Size,typename StorageType,typename OperationType>
Vector<Size,StorageType,OperationType> operator*(const Vector<Size,StorageType,OperationType>& lhs, const Vector<Size,StorageType,OperationType>& rhs);
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType> operator*(const Vector<Size, StorageType, OperationType>& lhs, const Vector<Size, StorageType, OperationType>& rhs);
/// Division operator.
template <uint32_t Size,typename StorageType,typename OperationType>
Vector<Size,StorageType,OperationType> operator/(const Vector<Size,StorageType,OperationType>& lhs, const Vector<Size,StorageType,OperationType>& rhs);
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType> operator/(const Vector<Size, StorageType, OperationType>& lhs, const Vector<Size, StorageType, OperationType>& rhs);
/// Multiplication operator.
template <uint32_t Size,typename StorageType,typename OperationType>
Vector<Size,StorageType,OperationType> operator*(const Vector<Size,StorageType,OperationType>& lhs, const StorageType& rhs);
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType> operator*(const Vector<Size, StorageType, OperationType>& lhs, const StorageType& rhs);
/// Division operator.
template <uint32_t Size,typename StorageType,typename OperationType>
Vector<Size,StorageType,OperationType> operator/(const Vector<Size,StorageType,OperationType>& lhs, const StorageType& rhs);
/// Stream insertion operator.
template <uint32_t Size, typename StorageType,typename OperationType>
std::ostream& operator<<(std::ostream& os, const Vector<Size,StorageType,OperationType>& vector);
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType> operator/(const Vector<Size, StorageType, OperationType>& lhs, const StorageType& rhs);
/// Stream insertion operator.
template <uint32_t Size, typename StorageType, typename OperationType>
std::ostream& operator<<(std::ostream& os, const Vector<Size, StorageType, OperationType>& vector);
//Some handy typedefs
/// A 2D Vector of floats.
typedef Vector<2,float,float> Vector2DFloat;
typedef Vector<2, float, float> Vector2DFloat;
/// A 2D Vector of doubles.
typedef Vector<2,double,double> Vector2DDouble;
typedef Vector<2, double, double> Vector2DDouble;
/// A 2D Vector of signed 8-bit values.
typedef Vector<2,int8_t,int32_t> Vector2DInt8;
typedef Vector<2, int8_t, int32_t> Vector2DInt8;
/// A 2D Vector of unsigned 8-bit values.
typedef Vector<2,uint8_t,int32_t> Vector2DUint8;
typedef Vector<2, uint8_t, int32_t> Vector2DUint8;
/// A 2D Vector of signed 16-bit values.
typedef Vector<2,int16_t,int32_t> Vector2DInt16;
typedef Vector<2, int16_t, int32_t> Vector2DInt16;
/// A 2D Vector of unsigned 16-bit values.
typedef Vector<2,uint16_t,int32_t> Vector2DUint16;
typedef Vector<2, uint16_t, int32_t> Vector2DUint16;
/// A 2D Vector of signed 32-bit values.
typedef Vector<2,int32_t,int32_t> Vector2DInt32;
typedef Vector<2, int32_t, int32_t> Vector2DInt32;
/// A 2D Vector of unsigned 32-bit values.
typedef Vector<2,uint32_t,int32_t> Vector2DUint32;
typedef Vector<2, uint32_t, int32_t> Vector2DUint32;
/// A 3D Vector of floats.
typedef Vector<3,float,float> Vector3DFloat;
typedef Vector<3, float, float> Vector3DFloat;
/// A 3D Vector of doubles.
typedef Vector<3,double,double> Vector3DDouble;
typedef Vector<3, double, double> Vector3DDouble;
/// A 3D Vector of signed 8-bit values.
typedef Vector<3,int8_t,int32_t> Vector3DInt8;
typedef Vector<3, int8_t, int32_t> Vector3DInt8;
/// A 3D Vector of unsigned 8-bit values.
typedef Vector<3,uint8_t,int32_t> Vector3DUint8;
typedef Vector<3, uint8_t, int32_t> Vector3DUint8;
/// A 3D Vector of signed 16-bit values.
typedef Vector<3,int16_t,int32_t> Vector3DInt16;
typedef Vector<3, int16_t, int32_t> Vector3DInt16;
/// A 3D Vector of unsigned 16-bit values.
typedef Vector<3,uint16_t,int32_t> Vector3DUint16;
typedef Vector<3, uint16_t, int32_t> Vector3DUint16;
/// A 3D Vector of signed 32-bit values.
typedef Vector<3,int32_t,int32_t> Vector3DInt32;
typedef Vector<3, int32_t, int32_t> Vector3DInt32;
/// A 3D Vector of unsigned 32-bit values.
typedef Vector<3,uint32_t,int32_t> Vector3DUint32;
typedef Vector<3, uint32_t, int32_t> Vector3DUint32;
/// A 4D Vector of floats.
typedef Vector<4,float,float> Vector4DFloat;
typedef Vector<4, float, float> Vector4DFloat;
/// A 4D Vector of doubles.
typedef Vector<4,double,double> Vector4DDouble;
typedef Vector<4, double, double> Vector4DDouble;
/// A 4D Vector of signed 8-bit values.
typedef Vector<4,int8_t,int32_t> Vector4DInt8;
typedef Vector<4, int8_t, int32_t> Vector4DInt8;
/// A 4D Vector of unsigned 8-bit values.
typedef Vector<4,uint8_t,int32_t> Vector4DUint8;
typedef Vector<4, uint8_t, int32_t> Vector4DUint8;
/// A 4D Vector of signed 16-bit values.
typedef Vector<4,int16_t,int32_t> Vector4DInt16;
typedef Vector<4, int16_t, int32_t> Vector4DInt16;
/// A 4D Vector of unsigned 16-bit values.
typedef Vector<4,uint16_t,int32_t> Vector4DUint16;
typedef Vector<4, uint16_t, int32_t> Vector4DUint16;
/// A 4D Vector of signed 32-bit values.
typedef Vector<4,int32_t,int32_t> Vector4DInt32;
typedef Vector<4, int32_t, int32_t> Vector4DInt32;
/// A 4D Vector of unsigned 32-bit values.
typedef Vector<4,uint32_t,int32_t> Vector4DUint32;
typedef Vector<4, uint32_t, int32_t> Vector4DUint32;
}//namespace PolyVox

View File

@ -24,7 +24,7 @@
namespace PolyVox
{
//-------------------------- Constructors, etc ---------------------------------
//-------------------------- Constructors, etc ---------------------------------
/**
* Creates a Vector object but does not initialise it.
*/
@ -34,28 +34,28 @@ namespace PolyVox
}
/**
* Creates a Vector object and initialises all components with the given value.
* \param tFillValue The value to write to every component.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
Vector<Size,StorageType,OperationType>::Vector(StorageType tFillValue)
{
* Creates a Vector object and initialises all components with the given value.
* \param tFillValue The value to write to every component.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType>::Vector(StorageType tFillValue)
{
std::fill(m_tElements, m_tElements + Size, tFillValue);
}
}
/**
* Creates a Vector object and initialises it with given values.
* \param x The X component to set.
* \param y The Y component to set.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
Vector<Size,StorageType,OperationType>::Vector(StorageType x, StorageType y)
{
/**
* Creates a Vector object and initialises it with given values.
* \param x The X component to set.
* \param y The Y component to set.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType>::Vector(StorageType x, StorageType y)
{
static_assert(Size == 2, "This constructor should only be used for vectors with two elements.");
m_tElements[0] = x;
m_tElements[1] = y;
}
}
/**
* Creates a Vector3D object and initialises it with given values.
@ -63,8 +63,8 @@ namespace PolyVox
* \param y The Y component to set.
* \param z the Z component to set.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
Vector<Size,StorageType,OperationType>::Vector(StorageType x, StorageType y, StorageType z)
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType>::Vector(StorageType x, StorageType y, StorageType z)
{
static_assert(Size == 3, "This constructor should only be used for vectors with three elements.");
@ -81,8 +81,8 @@ namespace PolyVox
* \param z The Z component to set.
* \param w The W component to set.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
Vector<Size,StorageType,OperationType>::Vector(StorageType x, StorageType y, StorageType z, StorageType w)
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType>::Vector(StorageType x, StorageType y, StorageType z, StorageType w)
{
static_assert(Size == 4, "This constructor should only be used for vectors with four elements.");
@ -92,41 +92,41 @@ namespace PolyVox
m_tElements[3] = w;
}
/**
* Copy constructor builds object based on object passed as parameter.
* \param vector A reference to the Vector to be copied.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
/**
* Copy constructor builds object based on object passed as parameter.
* \param vector A reference to the Vector to be copied.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType>::Vector(const Vector<Size, StorageType, OperationType>& vector)
{
std::memcpy(m_tElements, vector.m_tElements, sizeof(StorageType) * Size);
}
{
std::memcpy(m_tElements, vector.m_tElements, sizeof(StorageType)* Size);
}
/**
* This copy constructor allows casting between vectors with different data types.
* It makes it possible to use code such as:
*
*
* Vector3DDouble v3dDouble(1.0,2.0,3.0);
* Vector3DFloat v3dFloat = static_cast<Vector3DFloat>(v3dDouble); //Casting
*
*
* \param vector A reference to the Vector to be copied.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
template <typename CastType>
Vector<Size, StorageType, OperationType>::Vector(const Vector<Size, CastType>& vector)
Vector<Size, StorageType, OperationType>::Vector(const Vector<Size, CastType>& vector)
{
for(uint32_t ct = 0; ct < Size; ++ct)
for (uint32_t ct = 0; ct < Size; ++ct)
{
m_tElements[ct] = static_cast<StorageType>(vector.getElement(ct));
}
}
/**
* Destroys the Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
/**
* Destroys the Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType>::~Vector(void)
{
{
// We put the static asserts in the destructor because there is one one of these,
// where as there are multiple constructors.
@ -135,213 +135,213 @@ namespace PolyVox
// behaviour of the constructor taking a single value, as this fills all elements
// to that value rather than just the first one.
static_assert(Size > 1, "Vector must have a length greater than one.");
}
}
/**
* Assignment operator copies each element of first Vector to the second.
* \param rhs Vector to assign to.
* \return A reference to the result to allow chaining.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
/**
* Assignment operator copies each element of first Vector to the second.
* \param rhs Vector to assign to.
* \return A reference to the result to allow chaining.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType>& Vector<Size, StorageType, OperationType>::operator=(const Vector<Size, StorageType, OperationType>& rhs)
{
if(this == &rhs)
{
if (this == &rhs)
{
return *this;
}
std::memcpy(m_tElements, rhs.m_tElements, sizeof(StorageType) * Size);
return *this;
}
std::memcpy(m_tElements, rhs.m_tElements, sizeof(StorageType)* Size);
return *this;
}
/**
* Checks whether two Vectors are equal.
* \param rhs The Vector to compare to.
* \return true if the Vectors match.
* \see operator!=
*/
template <uint32_t Size, typename StorageType, typename OperationType>
/**
* Checks whether two Vectors are equal.
* \param rhs The Vector to compare to.
* \return true if the Vectors match.
* \see operator!=
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline bool Vector<Size, StorageType, OperationType>::operator==(const Vector<Size, StorageType, OperationType> &rhs) const
{
{
bool equal = true;
for(uint32_t ct = 0; ct < Size; ++ct)
for (uint32_t ct = 0; ct < Size; ++ct)
{
if(m_tElements[ct] != rhs.m_tElements[ct])
if (m_tElements[ct] != rhs.m_tElements[ct])
{
equal = false;
break;
}
}
return equal;
}
}
/**
* Checks whether two Vectors are not equal.
* \param rhs The Vector to compare to.
* \return true if the Vectors do not match.
* \see operator==
*/
template <uint32_t Size, typename StorageType, typename OperationType>
* Checks whether two Vectors are not equal.
* \param rhs The Vector to compare to.
* \return true if the Vectors do not match.
* \see operator==
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline bool Vector<Size, StorageType, OperationType>::operator!=(const Vector<Size, StorageType, OperationType> &rhs) const
{
{
return !(*this == rhs); //Just call equality operator and invert the result.
}
}
/**
* Addition operator adds corresponding elements of the two Vectors.
* \param rhs The Vector to add
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
/**
* Addition operator adds corresponding elements of the two Vectors.
* \param rhs The Vector to add
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline Vector<Size, StorageType, OperationType>& Vector<Size, StorageType, OperationType>::operator+=(const Vector<Size, StorageType, OperationType>& rhs)
{
for(uint32_t ct = 0; ct < Size; ++ct)
{
for (uint32_t ct = 0; ct < Size; ++ct)
{
m_tElements[ct] += rhs.m_tElements[ct];
}
return *this;
}
return *this;
}
/**
* Subtraction operator subtracts corresponding elements of one Vector from the other.
* \param rhs The Vector to subtract
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
* Subtraction operator subtracts corresponding elements of one Vector from the other.
* \param rhs The Vector to subtract
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline Vector<Size, StorageType, OperationType>& Vector<Size, StorageType, OperationType>::operator-=(const Vector<Size, StorageType, OperationType>& rhs)
{
for(uint32_t ct = 0; ct < Size; ++ct)
{
for (uint32_t ct = 0; ct < Size; ++ct)
{
m_tElements[ct] -= rhs.m_tElements[ct];
}
return *this;
}
return *this;
}
/**
* Multiplication operator multiplies corresponding elements of the two Vectors.
* \param rhs The Vector to multiply by
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
* Multiplication operator multiplies corresponding elements of the two Vectors.
* \param rhs The Vector to multiply by
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline Vector<Size, StorageType, OperationType>& Vector<Size, StorageType, OperationType>::operator*=(const Vector<Size, StorageType, OperationType>& rhs)
{
for(uint32_t ct = 0; ct < Size; ++ct)
{
for (uint32_t ct = 0; ct < Size; ++ct)
{
m_tElements[ct] *= rhs.m_tElements[ct];
}
return *this;
}
return *this;
}
/**
* Division operator divides corresponding elements of one Vector by the other.
* \param rhs The Vector to divide by
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
* Division operator divides corresponding elements of one Vector by the other.
* \param rhs The Vector to divide by
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline Vector<Size, StorageType, OperationType>& Vector<Size, StorageType, OperationType>::operator/=(const Vector<Size, StorageType, OperationType>& rhs)
{
for(uint32_t ct = 0; ct < Size; ++ct)
{
for (uint32_t ct = 0; ct < Size; ++ct)
{
m_tElements[ct] /= rhs.m_tElements[ct];
}
return *this;
}
return *this;
}
/**
* Multiplication operator multiplies each element of the Vector by a number.
* \param rhs The number the Vector is multiplied by.
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
/**
* Multiplication operator multiplies each element of the Vector by a number.
* \param rhs The number the Vector is multiplied by.
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline Vector<Size, StorageType, OperationType>& Vector<Size, StorageType, OperationType>::operator*=(const StorageType& rhs)
{
for(uint32_t ct = 0; ct < Size; ++ct)
{
for (uint32_t ct = 0; ct < Size; ++ct)
{
m_tElements[ct] *= rhs;
}
return *this;
}
return *this;
}
/**
/**
* Division operator divides each element of the Vector by a number.
* \param rhs The number the Vector is divided by.
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline Vector<Size, StorageType, OperationType>& Vector<Size, StorageType, OperationType>::operator/=(const StorageType& rhs)
{
for(uint32_t ct = 0; ct < Size; ++ct)
{
for (uint32_t ct = 0; ct < Size; ++ct)
{
m_tElements[ct] /= rhs;
}
return *this;
}
return *this;
}
/**
* Addition operator adds corresponding elements of the two Vectors.
* Addition operator adds corresponding elements of the two Vectors.
* \param lhs The Vector to add to.
* \param rhs The Vector to add.
* \return The resulting Vector.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
Vector<Size,StorageType,OperationType> operator+(const Vector<Size,StorageType,OperationType>& lhs, const Vector<Size,StorageType,OperationType>& rhs)
* \param rhs The Vector to add.
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType> operator+(const Vector<Size, StorageType, OperationType>& lhs, const Vector<Size, StorageType, OperationType>& rhs)
{
Vector<Size,StorageType,OperationType> result = lhs;
Vector<Size, StorageType, OperationType> result = lhs;
result += rhs;
return result;
}
/**
* Subtraction operator subtracts corresponding elements of one Vector from the other.
* Subtraction operator subtracts corresponding elements of one Vector from the other.
* \param lhs The Vector to subtract from.
* \param rhs The Vector to subtract.
* \return The resulting Vector.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
Vector<Size,StorageType,OperationType> operator-(const Vector<Size,StorageType,OperationType>& lhs, const Vector<Size,StorageType,OperationType>& rhs)
* \param rhs The Vector to subtract.
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType> operator-(const Vector<Size, StorageType, OperationType>& lhs, const Vector<Size, StorageType, OperationType>& rhs)
{
Vector<Size,StorageType,OperationType> result = lhs;
Vector<Size, StorageType, OperationType> result = lhs;
result -= rhs;
return result;
}
/**
* Multiplication operator mulitplies corresponding elements of the two Vectors.
* Multiplication operator mulitplies corresponding elements of the two Vectors.
* \param lhs The Vector to multiply.
* \param rhs The Vector to multiply by.
* \return The resulting Vector.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
Vector<Size,StorageType,OperationType> operator*(const Vector<Size,StorageType,OperationType>& lhs, const Vector<Size,StorageType,OperationType>& rhs)
* \param rhs The Vector to multiply by.
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType> operator*(const Vector<Size, StorageType, OperationType>& lhs, const Vector<Size, StorageType, OperationType>& rhs)
{
Vector<Size,StorageType,OperationType> result = lhs;
Vector<Size, StorageType, OperationType> result = lhs;
result *= rhs;
return result;
}
/**
* Division operator divides corresponding elements of one Vector by the other.
* Division operator divides corresponding elements of one Vector by the other.
* \param lhs The Vector to divide.
* \param rhs The Vector to divide by.
* \return The resulting Vector.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
Vector<Size,StorageType,OperationType> operator/(const Vector<Size,StorageType,OperationType>& lhs, const Vector<Size,StorageType,OperationType>& rhs)
* \param rhs The Vector to divide by.
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType> operator/(const Vector<Size, StorageType, OperationType>& lhs, const Vector<Size, StorageType, OperationType>& rhs)
{
Vector<Size,StorageType,OperationType> result = lhs;
Vector<Size, StorageType, OperationType> result = lhs;
result /= rhs;
return result;
}
/**
* Multiplication operator multiplies each element of the Vector by a number.
* Multiplication operator multiplies each element of the Vector by a number.
* \param lhs The Vector to multiply.
* \param rhs The number the Vector is multiplied by.
* \return The resulting Vector.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
Vector<Size,StorageType,OperationType> operator*(const Vector<Size,StorageType,OperationType>& lhs, const StorageType& rhs)
* \param rhs The number the Vector is multiplied by.
* \return The resulting Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType> operator*(const Vector<Size, StorageType, OperationType>& lhs, const StorageType& rhs)
{
Vector<Size,StorageType,OperationType> result = lhs;
Vector<Size, StorageType, OperationType> result = lhs;
result *= rhs;
return result;
}
@ -351,36 +351,36 @@ namespace PolyVox
* \param lhs The Vector to divide.
* \param rhs The number the Vector is divided by.
* \return The resulting Vector.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
Vector<Size,StorageType,OperationType> operator/(const Vector<Size,StorageType,OperationType>& lhs, const StorageType& rhs)
*/
template <uint32_t Size, typename StorageType, typename OperationType>
Vector<Size, StorageType, OperationType> operator/(const Vector<Size, StorageType, OperationType>& lhs, const StorageType& rhs)
{
Vector<Size,StorageType,OperationType> result = lhs;
Vector<Size, StorageType, OperationType> result = lhs;
result /= rhs;
return result;
}
/**
* Enables the Vector to be used intuitively with output streams such as cout.
* \param os The output stream to write to.
* \param vector The Vector to write to the stream.
* \return A reference to the output stream to allow chaining.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
/**
* Enables the Vector to be used intuitively with output streams such as cout.
* \param os The output stream to write to.
* \param vector The Vector to write to the stream.
* \return A reference to the output stream to allow chaining.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
std::ostream& operator<<(std::ostream& os, const Vector<Size, StorageType, OperationType>& vector)
{
os << "(";
for(uint32_t ct = 0; ct < Size; ++ct)
{
os << "(";
for (uint32_t ct = 0; ct < Size; ++ct)
{
os << vector.getElement(ct);
if(ct < (Size-1))
if (ct < (Size - 1))
{
os << ",";
}
}
os << ")";
return os;
}
return os;
}
/**
* Returns the element at the given position.
@ -390,7 +390,7 @@ namespace PolyVox
template <uint32_t Size, typename StorageType, typename OperationType>
inline StorageType Vector<Size, StorageType, OperationType>::getElement(uint32_t index) const
{
if(index >= Size)
if (index >= Size)
{
POLYVOX_THROW(std::out_of_range, "Attempted to access invalid vector element.");
}
@ -398,34 +398,34 @@ namespace PolyVox
return m_tElements[index];
}
/**
* \return A const reference to the X component of a 1, 2, 3, or 4 dimensional Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
/**
* \return A const reference to the X component of a 1, 2, 3, or 4 dimensional Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline StorageType Vector<Size, StorageType, OperationType>::getX(void) const
{
return m_tElements[0]; // This is fine, a Vector always contains at least two elements.
}
{
return m_tElements[0]; // This is fine, a Vector always contains at least two elements.
}
/**
* \return A const reference to the Y component of a 2, 3, or 4 dimensional Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
template <uint32_t Size, typename StorageType, typename OperationType>
inline StorageType Vector<Size, StorageType, OperationType>::getY(void) const
{
return m_tElements[1]; // This is fine, a Vector always contains at least two elements.
}
{
return m_tElements[1]; // This is fine, a Vector always contains at least two elements.
}
/**
* \return A const reference to the Z component of a 3 or 4 dimensional Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
template <uint32_t Size, typename StorageType, typename OperationType>
inline StorageType Vector<Size, StorageType, OperationType>::getZ(void) const
{
{
static_assert(Size >= 3, "You can only get the 'z' component from a vector with at least three elements.");
return m_tElements[2];
}
return m_tElements[2];
}
/**
* \return A const reference to the W component of a 4 dimensional Vector.
@ -436,7 +436,7 @@ namespace PolyVox
static_assert(Size >= 4, "You can only get the 'w' component from a vector with at least four elements.");
return m_tElements[3];
}
}
/**
* \param index The index of the element to set.
@ -445,7 +445,7 @@ namespace PolyVox
template <uint32_t Size, typename StorageType, typename OperationType>
inline void Vector<Size, StorageType, OperationType>::setElement(uint32_t index, StorageType tValue)
{
if(index >= Size)
if (index >= Size)
{
POLYVOX_THROW(std::out_of_range, "Attempted to access invalid vector element.");
}
@ -454,17 +454,17 @@ namespace PolyVox
}
/**
* Sets several elements of a vector at once.
* \param x The X component to set.
* \param y The Y component to set.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
inline void Vector<Size,StorageType,OperationType>::setElements(StorageType x, StorageType y)
{
* Sets several elements of a vector at once.
* \param x The X component to set.
* \param y The Y component to set.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline void Vector<Size, StorageType, OperationType>::setElements(StorageType x, StorageType y)
{
// This is fine, a Vector always contains at least two elements.
m_tElements[0] = x;
m_tElements[1] = y;
}
}
/**
* Sets several elements of a vector at once.
@ -472,8 +472,8 @@ namespace PolyVox
* \param y The Y component to set.
* \param z The Z component to set.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
inline void Vector<Size,StorageType,OperationType>::setElements(StorageType x, StorageType y, StorageType z)
template <uint32_t Size, typename StorageType, typename OperationType>
inline void Vector<Size, StorageType, OperationType>::setElements(StorageType x, StorageType y, StorageType z)
{
static_assert(Size >= 3, "You can only use this version of setElements() on a vector with at least three elements.");
@ -489,8 +489,8 @@ namespace PolyVox
* \param z The Z component to set.
* \param w The W component to set.
*/
template <uint32_t Size,typename StorageType, typename OperationType>
inline void Vector<Size,StorageType,OperationType>::setElements(StorageType x, StorageType y, StorageType z, StorageType w)
template <uint32_t Size, typename StorageType, typename OperationType>
inline void Vector<Size, StorageType, OperationType>::setElements(StorageType x, StorageType y, StorageType z, StorageType w)
{
static_assert(Size >= 4, "You can only use this version of setElements() on a vector with at least four elements.");
@ -503,141 +503,141 @@ namespace PolyVox
/**
* \param tX The new value for the X component of a 1, 2, 3, or 4 dimensional Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
template <uint32_t Size, typename StorageType, typename OperationType>
inline void Vector<Size, StorageType, OperationType>::setX(StorageType tX)
{
m_tElements[0] = tX; // This is fine, a Vector always contains at least two elements.
}
{
m_tElements[0] = tX; // This is fine, a Vector always contains at least two elements.
}
/**
* \param tY The new value for the Y component of a 2, 3, or 4 dimensional Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
template <uint32_t Size, typename StorageType, typename OperationType>
inline void Vector<Size, StorageType, OperationType>::setY(StorageType tY)
{
m_tElements[1] = tY; // This is fine, a Vector always contains at least two elements.
}
{
m_tElements[1] = tY; // This is fine, a Vector always contains at least two elements.
}
/**
* \param tZ The new value for the Z component of a 3 or 4 dimensional Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
template <uint32_t Size, typename StorageType, typename OperationType>
inline void Vector<Size, StorageType, OperationType>::setZ(StorageType tZ)
{
{
static_assert(Size >= 3, "You can only set the 'w' component from a vector with at least three elements.");
m_tElements[2] = tZ;
}
}
/**
* \param tW The new value for the W component of a 4 dimensional Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline void Vector<Size, StorageType, OperationType>::setW(StorageType tW)
{
{
static_assert(Size >= 4, "You can only set the 'w' component from a vector with at least four elements.");
m_tElements[3] = tW;
}
}
/**
* \note This function always returns a single precision floating point value, even when the StorageType is a double precision floating point value or an integer.
* \return The length of the Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
* \return The length of the Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline float Vector<Size, StorageType, OperationType>::length(void) const
{
return sqrt(static_cast<float>(lengthSquared()));
}
{
return sqrt(static_cast<float>(lengthSquared()));
}
/**
* \return The squared length of the Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
/**
* \return The squared length of the Vector.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline OperationType Vector<Size, StorageType, OperationType>::lengthSquared(void) const
{
{
OperationType tLengthSquared = static_cast<OperationType>(0);
for(uint32_t ct = 0; ct < Size; ++ct)
for (uint32_t ct = 0; ct < Size; ++ct)
{
tLengthSquared += static_cast<OperationType>(m_tElements[ct]) * static_cast<OperationType>(m_tElements[ct]);
}
return tLengthSquared;
}
}
/**
* This function is commutative, such that a.angleTo(b) == b.angleTo(a). The angle
* returned is in radians and varies between 0 and 3.14(pi). It is always positive.
*
/**
* This function is commutative, such that a.angleTo(b) == b.angleTo(a). The angle
* returned is in radians and varies between 0 and 3.14(pi). It is always positive.
*
* \note This function always returns a single precision floating point value, even when the StorageType is a double precision floating point value or an integer.
*
* \param vector The Vector to find the angle to.
* \return The angle between them in radians.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
*
* \param vector The Vector to find the angle to.
* \return The angle between them in radians.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline float Vector<Size, StorageType, OperationType>::angleTo(const Vector<Size, StorageType, OperationType>& vector) const
{
return acos(static_cast<float>(dot(vector)) / (vector.length() * this->length()));
}
{
return acos(static_cast<float>(dot(vector)) / (vector.length() * this->length()));
}
/**
* This function is used to calculate the cross product of two Vectors.
* The cross product is the Vector which is perpendicular to the two
* given Vectors. It is worth remembering that, unlike the dot product,
* it is not commutative. E.g a.b != b.a. The cross product obeys the
/**
* This function is used to calculate the cross product of two Vectors.
* The cross product is the Vector which is perpendicular to the two
* given Vectors. It is worth remembering that, unlike the dot product,
* it is not commutative. E.g a.b != b.a. The cross product obeys the
* right-hand rule such that if the two vectors are given by the index
* finger and middle finger respectively then the cross product is given
* by the thumb.
* \param vector The vector to cross with this
* \return The value of the cross product.
* \see dot()
*/
template <uint32_t Size, typename StorageType, typename OperationType>
* \param vector The vector to cross with this
* \return The value of the cross product.
* \see dot()
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline Vector<Size, StorageType, OperationType> Vector<Size, StorageType, OperationType>::cross(const Vector<Size, StorageType, OperationType>& vector) const
{
StorageType i = vector.getZ() * this->getY() - vector.getY() * this->getZ();
StorageType j = vector.getX() * this->getZ() - vector.getZ() * this->getX();
StorageType k = vector.getY() * this->getX() - vector.getX() * this->getY();
return Vector<Size, StorageType, OperationType>(i,j,k);
}
{
StorageType i = vector.getZ() * this->getY() - vector.getY() * this->getZ();
StorageType j = vector.getX() * this->getZ() - vector.getZ() * this->getX();
StorageType k = vector.getY() * this->getX() - vector.getX() * this->getY();
return Vector<Size, StorageType, OperationType>(i, j, k);
}
/**
* Calculates the dot product of the Vector and the parameter.
* This function is commutative, such that a.dot(b) == b.dot(a).
* \param rhs The Vector to find the dot product with.
* \return The value of the dot product.
* \see cross()
*/
template <uint32_t Size, typename StorageType, typename OperationType>
/**
* Calculates the dot product of the Vector and the parameter.
* This function is commutative, such that a.dot(b) == b.dot(a).
* \param rhs The Vector to find the dot product with.
* \return The value of the dot product.
* \see cross()
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline OperationType Vector<Size, StorageType, OperationType>::dot(const Vector<Size, StorageType, OperationType>& rhs) const
{
OperationType dotProduct = static_cast<OperationType>(0);
for(uint32_t ct = 0; ct < Size; ++ct)
{
OperationType dotProduct = static_cast<OperationType>(0);
for (uint32_t ct = 0; ct < Size; ++ct)
{
dotProduct += static_cast<OperationType>(m_tElements[ct]) * static_cast<OperationType>(rhs.m_tElements[ct]);
}
return dotProduct;
}
}
/**
* Divides the i, j, and k components by the length to give a Vector of length 1.0. If the vector is
/**
* Divides the i, j, and k components by the length to give a Vector of length 1.0. If the vector is
* very short (or zero) then a divide by zero may cause elements to take on invalid values. You may
* want to check for this before normalising.
*
*
* \note You should not attempt to normalise a vector whose StorageType is an integer.
*/
template <uint32_t Size, typename StorageType, typename OperationType>
*/
template <uint32_t Size, typename StorageType, typename OperationType>
inline void Vector<Size, StorageType, OperationType>::normalise(void)
{
float fLength = this->length();
{
float fLength = this->length();
// We could wait until the NAN occurs before throwing, but then we'd have to add some roll-back code.
// This seems like a lot of overhead for a common operation which should rarely go wrong.
if(fLength <= 0.0001)
if (fLength <= 0.0001)
{
POLYVOX_THROW(invalid_operation, "Cannot normalise a vector with a length of zero");
}
for(uint32_t ct = 0; ct < Size; ++ct)
for (uint32_t ct = 0; ct < Size; ++ct)
{
// Standard float rules apply for divide-by-zero
m_tElements[ct] /= fLength;
@ -645,5 +645,5 @@ namespace PolyVox
//This shouldn't happen as we had the length check earlier. So it's probably a bug if it does happen.
POLYVOX_ASSERT(m_tElements[ct] == m_tElements[ct], "Obtained NAN during vector normalisation. Perhaps the input vector was too short?");
}
}
}
}//namespace PolyVox

View File

@ -37,9 +37,9 @@ namespace PolyVox
template< typename SrcVolumeType, typename DstVolumeType>
VolumeResampler<SrcVolumeType, DstVolumeType>::VolumeResampler(SrcVolumeType* pVolSrc, const Region &regSrc, DstVolumeType* pVolDst, const Region& regDst)
:m_pVolSrc(pVolSrc)
,m_regSrc(regSrc)
,m_pVolDst(pVolDst)
,m_regDst(regDst)
, m_regSrc(regSrc)
, m_pVolDst(pVolDst)
, m_regDst(regDst)
{
}
@ -54,7 +54,7 @@ namespace PolyVox
int32_t uDstHeight = m_regDst.getUpperY() - m_regDst.getLowerY() + 1;
int32_t uDstDepth = m_regDst.getUpperZ() - m_regDst.getLowerZ() + 1;
if((uSrcWidth == uDstWidth) && (uSrcHeight == uDstHeight) && (uSrcDepth == uDstDepth))
if ((uSrcWidth == uDstWidth) && (uSrcHeight == uDstHeight) && (uSrcDepth == uDstDepth))
{
resampleSameSize();
}
@ -67,15 +67,15 @@ namespace PolyVox
template< typename SrcVolumeType, typename DstVolumeType>
void VolumeResampler<SrcVolumeType, DstVolumeType>::resampleSameSize()
{
for(int32_t sz = m_regSrc.getLowerZ(), dz = m_regDst.getLowerZ(); dz <= m_regDst.getUpperZ(); sz++, dz++)
for (int32_t sz = m_regSrc.getLowerZ(), dz = m_regDst.getLowerZ(); dz <= m_regDst.getUpperZ(); sz++, dz++)
{
for(int32_t sy = m_regSrc.getLowerY(), dy = m_regDst.getLowerY(); dy <= m_regDst.getUpperY(); sy++, dy++)
for (int32_t sy = m_regSrc.getLowerY(), dy = m_regDst.getLowerY(); dy <= m_regDst.getUpperY(); sy++, dy++)
{
for(int32_t sx = m_regSrc.getLowerX(), dx = m_regDst.getLowerX(); dx <= m_regDst.getUpperX(); sx++,dx++)
for (int32_t sx = m_regSrc.getLowerX(), dx = m_regDst.getLowerX(); dx <= m_regDst.getUpperX(); sx++, dx++)
{
const typename SrcVolumeType::VoxelType& tSrcVoxel = m_pVolSrc->getVoxel(sx,sy,sz);
const typename SrcVolumeType::VoxelType& tSrcVoxel = m_pVolSrc->getVoxel(sx, sy, sz);
const typename DstVolumeType::VoxelType& tDstVoxel = static_cast<typename DstVolumeType::VoxelType>(tSrcVoxel);
m_pVolDst->setVoxel(dx,dy,dz,tDstVoxel);
m_pVolDst->setVoxel(dx, dy, dz, tDstVoxel);
}
}
}
@ -84,25 +84,25 @@ namespace PolyVox
template< typename SrcVolumeType, typename DstVolumeType>
void VolumeResampler<SrcVolumeType, DstVolumeType>::resampleArbitrary()
{
float srcWidth = m_regSrc.getWidthInCells();
float srcWidth = m_regSrc.getWidthInCells();
float srcHeight = m_regSrc.getHeightInCells();
float srcDepth = m_regSrc.getDepthInCells();
float srcDepth = m_regSrc.getDepthInCells();
float dstWidth = m_regDst.getWidthInCells();
float dstWidth = m_regDst.getWidthInCells();
float dstHeight = m_regDst.getHeightInCells();
float dstDepth = m_regDst.getDepthInCells();
float dstDepth = m_regDst.getDepthInCells();
float fScaleX = srcWidth / dstWidth;
float fScaleY = srcHeight / dstHeight;
float fScaleZ = srcDepth / dstDepth;
typename SrcVolumeType::Sampler sampler(m_pVolSrc);
for(int32_t dz = m_regDst.getLowerZ(); dz <= m_regDst.getUpperZ(); dz++)
for (int32_t dz = m_regDst.getLowerZ(); dz <= m_regDst.getUpperZ(); dz++)
{
for(int32_t dy = m_regDst.getLowerY(); dy <= m_regDst.getUpperY(); dy++)
for (int32_t dy = m_regDst.getLowerY(); dy <= m_regDst.getUpperY(); dy++)
{
for(int32_t dx = m_regDst.getLowerX(); dx <= m_regDst.getUpperX(); dx++)
for (int32_t dx = m_regDst.getLowerX(); dx <= m_regDst.getUpperX(); dx++)
{
float sx = (dx - m_regDst.getLowerX()) * fScaleX;
float sy = (dy - m_regDst.getLowerY()) * fScaleY;
@ -112,7 +112,7 @@ namespace PolyVox
sy += m_regSrc.getLowerY();
sz += m_regSrc.getLowerZ();
sampler.setPosition(sx,sy,sz);
sampler.setPosition(sx, sy, sz);
const typename SrcVolumeType::VoxelType& voxel000 = sampler.peekVoxel0px0py0pz();
const typename SrcVolumeType::VoxelType& voxel001 = sampler.peekVoxel0px0py1pz();
const typename SrcVolumeType::VoxelType& voxel010 = sampler.peekVoxel0px1py0pz();
@ -128,10 +128,10 @@ namespace PolyVox
sy = modf(sy, &dummy);
sz = modf(sz, &dummy);
typename SrcVolumeType::VoxelType tInterpolatedValue = trilerp<float>(voxel000,voxel100,voxel010,voxel110,voxel001,voxel101,voxel011,voxel111,sx,sy,sz);
typename SrcVolumeType::VoxelType tInterpolatedValue = trilerp<float>(voxel000, voxel100, voxel010, voxel110, voxel001, voxel101, voxel011, voxel111, sx, sy, sz);
typename DstVolumeType::VoxelType result = static_cast<typename DstVolumeType::VoxelType>(tInterpolatedValue);
m_pVolDst->setVoxel(dx,dy,dz,result);
m_pVolDst->setVoxel(dx, dy, dz, result);
}
}
}

View File

@ -36,13 +36,13 @@ template< typename VolumeType>
bool testVoxelValidator(const VolumeType* volData, const Vector3DInt32& v3dPos)
{
//Voxels are considered valid candidates for the path if they are inside the volume...
if(volData->getEnclosingRegion().containsPoint(v3dPos) == false)
if (volData->getEnclosingRegion().containsPoint(v3dPos) == false)
{
return false;
}
typename VolumeType::VoxelType voxel = volData->getVoxel(v3dPos);
if(voxel != 0)
if (voxel != 0)
{
return false;
}
@ -52,61 +52,61 @@ bool testVoxelValidator(const VolumeType* volData, const Vector3DInt32& v3dPos)
void TestAStarPathfinder::testExecute()
{
const Vector3DInt32 expectedResult[] =
const Vector3DInt32 expectedResult[] =
{
Vector3DInt32(0,0,0),
Vector3DInt32(1,1,1),
Vector3DInt32(2,1,2),
Vector3DInt32(3,1,3),
Vector3DInt32(3,1,4),
Vector3DInt32(3,1,5),
Vector3DInt32(3,1,6),
Vector3DInt32(3,1,7),
Vector3DInt32(4,2,8),
Vector3DInt32(5,3,9),
Vector3DInt32(5,3,10),
Vector3DInt32(5,3,11),
Vector3DInt32(6,4,12),
Vector3DInt32(7,5,13),
Vector3DInt32(8,6,13),
Vector3DInt32(9,7,13),
Vector3DInt32(9,8,13),
Vector3DInt32(10,9,13),
Vector3DInt32(11,10,14),
Vector3DInt32(12,11,15),
Vector3DInt32(13,12,15),
Vector3DInt32(14,13,15),
Vector3DInt32(14,14,15),
Vector3DInt32(15,15,15)
Vector3DInt32(0, 0, 0),
Vector3DInt32(1, 1, 1),
Vector3DInt32(2, 1, 2),
Vector3DInt32(3, 1, 3),
Vector3DInt32(3, 1, 4),
Vector3DInt32(3, 1, 5),
Vector3DInt32(3, 1, 6),
Vector3DInt32(3, 1, 7),
Vector3DInt32(4, 2, 8),
Vector3DInt32(5, 3, 9),
Vector3DInt32(5, 3, 10),
Vector3DInt32(5, 3, 11),
Vector3DInt32(6, 4, 12),
Vector3DInt32(7, 5, 13),
Vector3DInt32(8, 6, 13),
Vector3DInt32(9, 7, 13),
Vector3DInt32(9, 8, 13),
Vector3DInt32(10, 9, 13),
Vector3DInt32(11, 10, 14),
Vector3DInt32(12, 11, 15),
Vector3DInt32(13, 12, 15),
Vector3DInt32(14, 13, 15),
Vector3DInt32(14, 14, 15),
Vector3DInt32(15, 15, 15)
};
const int32_t uVolumeSideLength = 16;
//Create a volume
RawVolume<uint8_t> volData(Region(Vector3DInt32(0,0,0), Vector3DInt32(uVolumeSideLength-1, uVolumeSideLength-1, uVolumeSideLength-1)));
RawVolume<uint8_t> volData(Region(Vector3DInt32(0, 0, 0), Vector3DInt32(uVolumeSideLength - 1, uVolumeSideLength - 1, uVolumeSideLength - 1)));
//Clear the volume
for(int z = 0; z < uVolumeSideLength; z++)
for (int z = 0; z < uVolumeSideLength; z++)
{
for(int y = 0; y < uVolumeSideLength; y++)
for (int y = 0; y < uVolumeSideLength; y++)
{
for(int x = 0; x < uVolumeSideLength; x++)
for (int x = 0; x < uVolumeSideLength; x++)
{
uint8_t solidVoxel(0);
volData.setVoxel(x,y,z,solidVoxel);
volData.setVoxel(x, y, z, solidVoxel);
}
}
}
//Place a solid cube in the middle of it
for(int z = 4; z < 12; z++)
for (int z = 4; z < 12; z++)
{
for(int y = 4; y < 12; y++)
for (int y = 4; y < 12; y++)
{
for(int x = 4; x < 12; x++)
for (int x = 4; x < 12; x++)
{
uint8_t solidVoxel(1);
volData.setVoxel(x,y,z,solidVoxel);
volData.setVoxel(x, y, z, solidVoxel);
}
}
}
@ -115,20 +115,20 @@ void TestAStarPathfinder::testExecute()
std::list<Vector3DInt32> result;
//Create an AStarPathfinder
AStarPathfinderParams< RawVolume<uint8_t> > params(&volData, Vector3DInt32(0,0,0), Vector3DInt32(15,15,15), &result, 1.0f, 10000, TwentySixConnected, &testVoxelValidator<RawVolume<uint8_t> >);
AStarPathfinderParams< RawVolume<uint8_t> > params(&volData, Vector3DInt32(0, 0, 0), Vector3DInt32(15, 15, 15), &result, 1.0f, 10000, TwentySixConnected, &testVoxelValidator<RawVolume<uint8_t> >);
AStarPathfinder< RawVolume<uint8_t> > pathfinder(params);
//Execute the pathfinder.
QBENCHMARK {
QBENCHMARK{
pathfinder.execute();
}
//Make sure the right number of steps were created.
//Make sure the right number of steps were created.
QCOMPARE(result.size(), static_cast<size_t>(24));
//Make sure that each step is correct.
uint32_t uExpectedIndex = 0;
for(std::list<Vector3DInt32>::iterator iterResult = result.begin(); iterResult != result.end(); iterResult++)
for (std::list<Vector3DInt32>::iterator iterResult = result.begin(); iterResult != result.end(); iterResult++)
{
Vector3DInt32 res = *iterResult;
Vector3DInt32 exp = expectedResult[uExpectedIndex];

View File

@ -62,7 +62,7 @@ void TestAmbientOcclusionGenerator::testExecute()
//Create two solid walls at opposite sides of the volume
for (int32_t z = 0; z < g_uVolumeSideLength; z++)
{
if((z < 20) || (z > g_uVolumeSideLength - 20))
if ((z < 20) || (z > g_uVolumeSideLength - 20))
{
for (int32_t y = 0; y < g_uVolumeSideLength; y++)
{
@ -80,21 +80,21 @@ void TestAmbientOcclusionGenerator::testExecute()
// Calculate the ambient occlusion values
IsVoxelTransparent isVoxelTransparent;
QBENCHMARK {
QBENCHMARK{
calculateAmbientOcclusion(&volData, &ambientOcclusionResult, region, 32.0f, 255, isVoxelTransparent);
}
//Check the results by sampling along a line though the centre of the volume. Because
//of the two walls we added, samples in the middle are darker than those at the edge.
QCOMPARE(static_cast<int>(ambientOcclusionResult(16, 0, 16)), 178);
QCOMPARE(static_cast<int>(ambientOcclusionResult(16, 8, 16)), 109);
//Check the results by sampling along a line though the centre of the volume. Because
//of the two walls we added, samples in the middle are darker than those at the edge.
QCOMPARE(static_cast<int>(ambientOcclusionResult(16, 0, 16)), 178);
QCOMPARE(static_cast<int>(ambientOcclusionResult(16, 8, 16)), 109);
QCOMPARE(static_cast<int>(ambientOcclusionResult(16, 16, 16)), 103);
QCOMPARE(static_cast<int>(ambientOcclusionResult(16, 24, 16)), 123);
QCOMPARE(static_cast<int>(ambientOcclusionResult(16, 31, 16)), 173);
//Just run a quick test to make sure that it compiles when taking a function pointer
calculateAmbientOcclusion(&volData, &ambientOcclusionResult, region, 32.0f, 8, &isVoxelTransparentFunction);
//Also test it using a lambda
//calculateAmbientOcclusion(&volData, &ambientOcclusionResult, volData.getEnclosingRegion(), 32.0f, 8, [](uint8_t voxel){return voxel == 0;});
}

View File

@ -94,11 +94,11 @@ void TestArray::testReadWrite()
int ct = 1;
int expectedTotal = 0;
for(int z = 0; z < depth; z++)
for (int z = 0; z < depth; z++)
{
for(int y = 0; y < height; y++)
for (int y = 0; y < height; y++)
{
for(int x = 0; x < width; x++)
for (int x = 0; x < width; x++)
{
myArray(x, y, z) = ct;
expectedTotal += myArray(x, y, z);
@ -109,11 +109,11 @@ void TestArray::testReadWrite()
ct = 1;
int total = 0;
for(int z = 0; z < depth; z++)
for (int z = 0; z < depth; z++)
{
for(int y = 0; y < height; y++)
for (int y = 0; y < height; y++)
{
for(int x = 0; x < width; x++)
for (int x = 0; x < width; x++)
{
QCOMPARE(myArray(x, y, z), ct);
total += myArray(x, y, z);

View File

@ -36,7 +36,7 @@ void TestLowPassFilter::testExecute()
{
const int32_t g_uVolumeSideLength = 8;
Region reg(Vector3DInt32(0,0,0), Vector3DInt32(g_uVolumeSideLength-1, g_uVolumeSideLength-1, g_uVolumeSideLength-1));
Region reg(Vector3DInt32(0, 0, 0), Vector3DInt32(g_uVolumeSideLength - 1, g_uVolumeSideLength - 1, g_uVolumeSideLength - 1));
//Create empty volume
RawVolume<Density8> volData(reg);
@ -48,7 +48,7 @@ void TestLowPassFilter::testExecute()
{
for (int32_t x = 0; x < g_uVolumeSideLength; x++)
{
if(x % 2 == 0)
if (x % 2 == 0)
{
Density8 voxel(32);
volData.setVoxel(x, y, z, voxel);
@ -62,30 +62,30 @@ void TestLowPassFilter::testExecute()
LowPassFilter< RawVolume<Density8>, RawVolume<Density8>, Density16 > lowPassfilter(&volData, reg, &resultVolume, reg, 3);
//Test the normal implementation
QBENCHMARK {
QBENCHMARK{
lowPassfilter.execute();
}
QCOMPARE(resultVolume.getVoxel(0,0,0), Density8(4));
QCOMPARE(resultVolume.getVoxel(1,1,1), Density8(21));
QCOMPARE(resultVolume.getVoxel(2,2,2), Density8(10));
QCOMPARE(resultVolume.getVoxel(3,3,3), Density8(21));
QCOMPARE(resultVolume.getVoxel(4,4,4), Density8(10));
QCOMPARE(resultVolume.getVoxel(5,5,5), Density8(21));
QCOMPARE(resultVolume.getVoxel(6,6,6), Density8(10));
QCOMPARE(resultVolume.getVoxel(7,7,7), Density8(4));
QCOMPARE(resultVolume.getVoxel(0, 0, 0), Density8(4));
QCOMPARE(resultVolume.getVoxel(1, 1, 1), Density8(21));
QCOMPARE(resultVolume.getVoxel(2, 2, 2), Density8(10));
QCOMPARE(resultVolume.getVoxel(3, 3, 3), Density8(21));
QCOMPARE(resultVolume.getVoxel(4, 4, 4), Density8(10));
QCOMPARE(resultVolume.getVoxel(5, 5, 5), Density8(21));
QCOMPARE(resultVolume.getVoxel(6, 6, 6), Density8(10));
QCOMPARE(resultVolume.getVoxel(7, 7, 7), Density8(4));
//Test the SAT implmentation
QBENCHMARK {
QBENCHMARK{
lowPassfilter.executeSAT();
}
QCOMPARE(resultVolume.getVoxel(0,0,0), Density8(4));
QCOMPARE(resultVolume.getVoxel(1,1,1), Density8(21));
QCOMPARE(resultVolume.getVoxel(2,2,2), Density8(10));
QCOMPARE(resultVolume.getVoxel(3,3,3), Density8(21));
QCOMPARE(resultVolume.getVoxel(4,4,4), Density8(10));
QCOMPARE(resultVolume.getVoxel(5,5,5), Density8(21));
QCOMPARE(resultVolume.getVoxel(6,6,6), Density8(10));
QCOMPARE(resultVolume.getVoxel(7,7,7), Density8(4));
QCOMPARE(resultVolume.getVoxel(0, 0, 0), Density8(4));
QCOMPARE(resultVolume.getVoxel(1, 1, 1), Density8(21));
QCOMPARE(resultVolume.getVoxel(2, 2, 2), Density8(10));
QCOMPARE(resultVolume.getVoxel(3, 3, 3), Density8(21));
QCOMPARE(resultVolume.getVoxel(4, 4, 4), Density8(10));
QCOMPARE(resultVolume.getVoxel(5, 5, 5), Density8(21));
QCOMPARE(resultVolume.getVoxel(6, 6, 6), Density8(10));
QCOMPARE(resultVolume.getVoxel(7, 7, 7), Density8(4));
}
QTEST_MAIN(TestLowPassFilter)

View File

@ -42,7 +42,7 @@ void TestPicking::testExecute()
{
for (int32_t x = 0; x < uVolumeSideLength; x++)
{
if((x > uVolumeSideLength/2)) //x > 16 is filled
if ((x > uVolumeSideLength / 2)) //x > 16 is filled
{
volData.setVoxel(x, y, z, 100);
}
@ -56,13 +56,13 @@ void TestPicking::testExecute()
const int8_t emptyVoxelExample = 0; //A voxel value of zero will represent empty space.
PickResult resultHit = pickVoxel(&volData, Vector3DFloat(0, uVolumeSideLength / 2, uVolumeSideLength / 2), Vector3DFloat(uVolumeSideLength, 0, 0), emptyVoxelExample);
QCOMPARE(resultHit.didHit, true);
QCOMPARE(resultHit.hitVoxel, Vector3DInt32((uVolumeSideLength / 2) + 1, uVolumeSideLength / 2, uVolumeSideLength / 2));
QCOMPARE(resultHit.previousVoxel, Vector3DInt32((uVolumeSideLength / 2), uVolumeSideLength / 2, uVolumeSideLength / 2));
PickResult resultMiss = pickVoxel(&volData, Vector3DFloat(0, uVolumeSideLength / 2, uVolumeSideLength / 2), Vector3DFloat(uVolumeSideLength / 2, uVolumeSideLength, uVolumeSideLength), emptyVoxelExample);
QCOMPARE(resultMiss.didHit, false);
}

View File

@ -44,7 +44,7 @@ class RaycastTestFunctor
public:
RaycastTestFunctor()
:m_uVoxelsTouched(0)
,m_bRayLeftVolume(false)
, m_bRayLeftVolume(false)
{
}
@ -55,7 +55,7 @@ public:
// For this particular test we know that we are always starting a ray inside the volume,
// so if it ever leaves the volume we know it can't go back in and so we can terminate early.
// This optimisation is worthwhile because samplers get slow once outside the volume.
if(!sampler.isCurrentPositionValid())
if (!sampler.isCurrentPositionValid())
{
m_bRayLeftVolume = true;
return false;
@ -81,20 +81,20 @@ void TestRaycast::testExecute()
{
for (int32_t x = 0; x < uVolumeSideLength; x++)
{
if((x == 0) || (x == uVolumeSideLength-1) || (y == 0) || (y == uVolumeSideLength-1))
if ((x == 0) || (x == uVolumeSideLength - 1) || (y == 0) || (y == uVolumeSideLength - 1))
{
volData.setVoxel(x, y, z, 100);
}
else
{
volData.setVoxel(x, y, z, -100);
}
}
}
}
}
//Cast rays from the centre. Roughly 2/3 should escape.
Vector3DFloat start (uVolumeSideLength / 2, uVolumeSideLength / 2, uVolumeSideLength / 2);
Vector3DFloat start(uVolumeSideLength / 2, uVolumeSideLength / 2, uVolumeSideLength / 2);
// We could have counted the total number of hits in the same way as the total number of voxels
// touched, but for demonstration and testing purposes we are making use of the raycast return value
@ -103,7 +103,7 @@ void TestRaycast::testExecute()
uint32_t uTotalVoxelsTouched = 0;
// Cast a large number of random rays
for(int ct = 0; ct < 1000000; ct++)
for (int ct = 0; ct < 1000000; ct++)
{
RaycastTestFunctor raycastTestFunctor;
RaycastResult result = raycastWithDirection(&volData, start, randomUnitVectors[ct % 1024] * 1000.0f, raycastTestFunctor);
@ -112,11 +112,11 @@ void TestRaycast::testExecute()
// If the raycast completed then we know it did not hit anything.If it was interupted then it
// probably hit something, unless we noted that the reason it was interupted was that it left the volume.
if((result == RaycastResults::Interupted) && (raycastTestFunctor.m_bRayLeftVolume == false))
if ((result == RaycastResults::Interupted) && (raycastTestFunctor.m_bRayLeftVolume == false))
{
hits++;
}
}
}
// Check the number of hits.
QCOMPARE(hits, 687494);

View File

@ -32,9 +32,9 @@ using namespace PolyVox;
void TestRegion::testEquality()
{
Region reg1(1,2,3,4,5,6);
Region reg2(0,0,0,10,20,30);
Region reg3(Vector3DInt32(1,2,3), Vector3DInt32(4,5,6));
Region reg1(1, 2, 3, 4, 5, 6);
Region reg2(0, 0, 0, 10, 20, 30);
Region reg3(Vector3DInt32(1, 2, 3), Vector3DInt32(4, 5, 6));
QCOMPARE(reg1 != reg2, true);
QCOMPARE(reg1 == reg3, true);

View File

@ -46,17 +46,17 @@ public:
//in the future
//typedef BaseVolume<VoxelType> VolumeOfVoxelType; //Workaround for GCC/VS2010 differences. See http://goo.gl/qu1wn
//class Sampler : public VolumeOfVoxelType::template Sampler< VolumeSubclass<VoxelType> >
#if defined(_MSC_VER)
class Sampler : public BaseVolume<VoxelType>::Sampler< VolumeSubclass<VoxelType> > //This line works on VS2010
#else
class Sampler : public BaseVolume<VoxelType>::template Sampler< VolumeSubclass<VoxelType> > //This line works on GCC
#endif
#if defined(_MSC_VER)
class Sampler : public BaseVolume<VoxelType>::Sampler< VolumeSubclass<VoxelType> > //This line works on VS2010
#else
class Sampler : public BaseVolume<VoxelType>::template Sampler< VolumeSubclass<VoxelType> > //This line works on GCC
#endif
{
public:
Sampler(VolumeSubclass<VoxelType>* volume)
:BaseVolume<VoxelType>::template Sampler< VolumeSubclass<VoxelType> >(volume)
{
this->mVolume = volume;
this->mVolume = volume;
}
//~Sampler();
};
@ -66,7 +66,7 @@ public:
:BaseVolume<VoxelType>()
, mVolumeData(regValid.getWidthInVoxels(), regValid.getHeightInVoxels(), regValid.getDepthInVoxels())
{
//mVolumeData.resize(ArraySizes(this->getWidth())(this->getHeight())(this->getDepth()));
//mVolumeData.resize(ArraySizes(this->getWidth())(this->getHeight())(this->getDepth()));
}
/// Destructor
~VolumeSubclass() {};
@ -97,7 +97,7 @@ public:
/// Sets the voxel at the position given by <tt>x,y,z</tt> coordinates
bool setVoxel(int32_t uXPos, int32_t uYPos, int32_t uZPos, VoxelType tValue)
{
if( (uXPos >= 0) && (uXPos < static_cast<int32_t>(mVolumeData.getDimension(0))) &&
if ((uXPos >= 0) && (uXPos < static_cast<int32_t>(mVolumeData.getDimension(0))) &&
(uYPos >= 0) && (uYPos < static_cast<int32_t>(mVolumeData.getDimension(1))) &&
(uZPos >= 0) && (uZPos < static_cast<int32_t>(mVolumeData.getDimension(2))))
{
@ -115,7 +115,7 @@ public:
/// Calculates approximatly how many bytes of memory the volume is currently using.
uint32_t calculateSizeInBytes(void) { return 0; }
private:
private:
Array<3, VoxelType> mVolumeData;
};
@ -131,7 +131,7 @@ void TestVolumeSubclass::testExtractSurface()
for (int32_t x = 0; x < region.getWidthInVoxels(); x++)
{
Material8 mat(1);
volumeSubclass.setVoxel(Vector3DInt32(x,y,z),mat);
volumeSubclass.setVoxel(Vector3DInt32(x, y, z), mat);
}
}
}

View File

@ -39,14 +39,14 @@ Vector3DFloat incrementVector(Vector3DFloat input)
void TestVector::testLength()
{
Vector3DInt8 vec(3, 4, 5);
QCOMPARE(vec.lengthSquared(), int32_t(3*3+4*4+5*5)); // QCOMPARE is strict on types. For an int8 vector, the OperationType is int32_t.
QCOMPARE(vec.lengthSquared(), int32_t(3 * 3 + 4 * 4 + 5 * 5)); // QCOMPARE is strict on types. For an int8 vector, the OperationType is int32_t.
}
void TestVector::testDotProduct()
{
Vector3DInt8 vecxy(3, 4, 0);
Vector3DInt8 vecz(0, 0, 1);
QCOMPARE(vecxy.dot(vecz), int32_t(0)); // QCOMPARE is strict on types. For an int8 vector, the OperationType is int32_t .
}
@ -54,7 +54,7 @@ void TestVector::testEquality()
{
Vector3DInt8 vecxy(3, 4, 0);
Vector3DInt8 vecz(0, 0, 1);
QCOMPARE(vecxy != vecz, true);
}
@ -64,13 +64,13 @@ void TestVector::testPerformance()
QBENCHMARK
{
for(uint32_t ct = 0; ct < 10000000; ct++)
for (uint32_t ct = 0; ct < 10000000; ct++)
{
vec = incrementVector(vec);
}
}
// Use the result so the calls don't get optimized away.
// Use the result so the calls don't get optimized away.
QCOMPARE(vec.lengthSquared() > 0.0f, true);
}

View File

@ -39,7 +39,7 @@ using namespace PolyVox;
// make sure we get the expected result from a series of volume accesses.
inline int32_t cantorTupleFunction(int32_t previousResult, int32_t value)
{
return (( previousResult + value ) * ( previousResult + value + 1 ) + value ) / 2;
return ((previousResult + value) * (previousResult + value + 1) + value) / 2;
}
/*
@ -60,16 +60,16 @@ int32_t testDirectAccessWithWrappingForwards(const VolumeType* volume, Region re
for (int x = region.getLowerX(); x <= region.getUpperX(); x++)
{
//Three level loop now processes 27 voxel neighbourhood
for(int innerZ = -1; innerZ <=1; innerZ++)
for (int innerZ = -1; innerZ <= 1; innerZ++)
{
for(int innerY = -1; innerY <=1; innerY++)
for (int innerY = -1; innerY <= 1; innerY++)
{
for(int innerX = -1; innerX <=1; innerX++)
for (int innerX = -1; innerX <= 1; innerX++)
{
result = cantorTupleFunction(result, volume->getVoxel(x + innerX, y + innerY, z + innerZ));
}
}
}
}
//End of inner loops
}
}
@ -149,16 +149,16 @@ int32_t testDirectAccessWithWrappingBackwards(const VolumeType* volume, Region r
for (int x = region.getUpperX(); x >= region.getLowerX(); x--)
{
//Three level loop now processes 27 voxel neighbourhood
for(int innerZ = -1; innerZ <=1; innerZ++)
for (int innerZ = -1; innerZ <= 1; innerZ++)
{
for(int innerY = -1; innerY <=1; innerY++)
for (int innerY = -1; innerY <= 1; innerY++)
{
for(int innerX = -1; innerX <=1; innerX++)
for (int innerX = -1; innerX <= 1; innerX++)
{
result = cantorTupleFunction(result, volume->getVoxel(x + innerX, y + innerY, z + innerZ));
}
}
}
}
//End of inner loops
}
}
@ -249,7 +249,7 @@ int32_t testDirectRandomAccess(const VolumeType* volume)
TestVolume::TestVolume()
{
m_regVolume = Region(-57, -31, 12, 64, 96, 131); // Deliberatly awkward size
m_regInternal = m_regVolume;
m_regInternal.shiftLowerCorner(4, 2, 2);
m_regInternal.shiftUpperCorner(-3, -1, -2);