/******************************************************************************* * The MIT License (MIT) * * Copyright (c) 2015 David Williams and Matthew Williams * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. *******************************************************************************/ namespace PolyVox { /** * This function fills a 3D array with ambient occlusion values computed by raycasting through the volume. * This approach to ambient occlusion is only appropriate for relatvely small volumes, otherwise it will * become very slow and consume a lot of memory. You will need to find a way to actually use the generated * ambient occlusion data, which might mean uploading it the the GPU as a volume texture or sampling on * the CPU using the vertex positions from your generated mesh. * * In practice we have not made much use of this implementation ourselves, so you may find it needs some * optimizations or improvements to be useful. It is likely that there are actually better approaches to * the ambient occlusion problem. * * \param volInput The volume to calculate the ambient occlusion for * \param[out] arrayResult The output of the calculator * \param region The region of the volume for which the occlusion should be calculated * \param fRayLength The length for each test ray * \param uNoOfSamplesPerOutputElement The number of samples to calculate the occlusion * \param isVoxelTransparentCallback A callback which takes a \a VoxelType and returns a \a bool whether the voxel is transparent */ template void calculateAmbientOcclusion(VolumeType* volInput, Array<3, uint8_t>* arrayResult, const Region& region, float fRayLength, uint8_t uNoOfSamplesPerOutputElement, IsVoxelTransparentCallback isVoxelTransparentCallback) { //Make sure that the size of the volume is an exact multiple of the size of the array. if (region.getWidthInVoxels() % arrayResult->getDimension(0) != 0) { POLYVOX_THROW(std::invalid_argument, "Volume width must be an exact multiple of array width."); } if (region.getHeightInVoxels() % arrayResult->getDimension(1) != 0) { POLYVOX_THROW(std::invalid_argument, "Volume width must be an exact multiple of array height."); } if (region.getDepthInVoxels() % arrayResult->getDimension(2) != 0) { POLYVOX_THROW(std::invalid_argument, "Volume width must be an exact multiple of array depth."); } uint16_t uRandomUnitVectorIndex = 0; uint16_t uRandomVectorIndex = 0; uint16_t uIndexIncreament; //Our initial indices. It doesn't matter exactly what we set here, but the code below makes //sure they are different for different regions which helps reduce tiling patterns in the results. uRandomUnitVectorIndex += region.getLowerX() + region.getLowerY() + region.getLowerZ(); uRandomVectorIndex += region.getLowerX() + region.getLowerY() + region.getLowerZ(); //This value helps us jump around in the array a bit more, so the //nth 'random' value isn't always followed by the n+1th 'random' value. uIndexIncreament = 1; const int iRatioX = region.getWidthInVoxels() / arrayResult->getDimension(0); const int iRatioY = region.getHeightInVoxels() / arrayResult->getDimension(1); const int iRatioZ = region.getDepthInVoxels() / arrayResult->getDimension(2); const float fRatioX = iRatioX; const float fRatioY = iRatioY; const float fRatioZ = iRatioZ; const Vector3DFloat v3dRatio(fRatioX, fRatioY, fRatioZ); const float fHalfRatioX = fRatioX * 0.5f; const float fHalfRatioY = fRatioY * 0.5f; const float fHalfRatioZ = fRatioZ * 0.5f; const Vector3DFloat v3dHalfRatio(fHalfRatioX, fHalfRatioY, fHalfRatioZ); const Vector3DFloat v3dOffset(0.5f, 0.5f, 0.5f); //This loop iterates over the bottom-lower-left voxel in each of the cells in the output array for (uint16_t z = region.getLowerZ(); z <= region.getUpperZ(); z += iRatioZ) { for (uint16_t y = region.getLowerY(); y <= region.getUpperY(); y += iRatioY) { for (uint16_t x = region.getLowerX(); x <= region.getUpperX(); x += iRatioX) { //Compute a start position corresponding to //the centre of the cell in the output array. Vector3DFloat v3dStart(x, y, z); v3dStart -= v3dOffset; v3dStart += v3dHalfRatio; //Keep track of how many rays did not hit anything uint8_t uVisibleDirections = 0; for (int ct = 0; ct < uNoOfSamplesPerOutputElement; ct++) { //We take a random vector with components going from -1 to 1 and scale it to go from -halfRatio to +halfRatio. //This jitter value moves our sample point from the centre of the array cell to somewhere else in the array cell Vector3DFloat v3dJitter = randomVectors[(uRandomVectorIndex += (++uIndexIncreament)) % 1019]; //Prime number helps avoid repetition on successive loops. v3dJitter *= v3dHalfRatio; const Vector3DFloat v3dRayStart = v3dStart + v3dJitter; Vector3DFloat v3dRayDirection = randomUnitVectors[(uRandomUnitVectorIndex += (++uIndexIncreament)) % 1021]; //Different prime number. v3dRayDirection *= fRayLength; AmbientOcclusionCalculatorRaycastCallback ambientOcclusionCalculatorRaycastCallback(isVoxelTransparentCallback); RaycastResult result = raycastWithDirection(volInput, v3dRayStart, v3dRayDirection, ambientOcclusionCalculatorRaycastCallback); // Note - The performance of this could actually be improved it we exited as soon // as the ray left the volume. The raycast test has an example of how to do this. if (result == RaycastResults::Completed) { ++uVisibleDirections; } } float fVisibility; if (uNoOfSamplesPerOutputElement == 0) { //The user might request zero samples (I've done this in the past while debugging - I don't want to //wait for ambient occlusion but I do want as valid result for rendering). Avoid the divide by zero. fVisibility = 1.0f; } else { fVisibility = static_cast(uVisibleDirections) / static_cast(uNoOfSamplesPerOutputElement); POLYVOX_ASSERT((fVisibility >= 0.0f) && (fVisibility <= 1.0f), "Visibility value out of range."); } (*arrayResult)(z / iRatioZ, y / iRatioY, x / iRatioX) = static_cast(255.0f * fVisibility); } } } } }