#include "SurfaceExtractors.h" #include "BlockVolume.h" #include "GradientEstimators.h" #include "IndexedSurfacePatch.h" #include "MarchingCubesTables.h" #include "Region.h" #include "RegionGeometry.h" #include "SurfaceAdjusters.h" #include "SurfaceExtractorsDecimated.h" #include "VolumeChangeTracker.h" #include "BlockVolumeIterator.h" #include using namespace std; namespace PolyVox { std::list getChangedRegionGeometry(VolumeChangeTracker& volume) { std::list listChangedRegions; volume.getChangedRegions(listChangedRegions); std::list listChangedRegionGeometry; for(std::list::const_iterator iterChangedRegions = listChangedRegions.begin(); iterChangedRegions != listChangedRegions.end(); ++iterChangedRegions) { //Generate the surface RegionGeometry regionGeometry; regionGeometry.m_patchSingleMaterial = new IndexedSurfacePatch(); regionGeometry.m_v3dRegionPosition = iterChangedRegions->getLowerCorner(); //generateDecimatedMeshDataForRegion(volume.getVolumeData(), 1, *iterChangedRegions, regionGeometry.m_patchSingleMaterial); generateReferenceMeshDataForRegion(volume.getVolumeData(), *iterChangedRegions, regionGeometry.m_patchSingleMaterial); //for(int ct = 0; ct < 2; ct++) Vector3DInt32 temp = regionGeometry.m_v3dRegionPosition; //temp /= 16; /*if(temp.getY() % 32 == 0) { //smoothRegionGeometry(volume.getVolumeData(), regionGeometry); generateDecimatedMeshDataForRegion(volume.getVolumeData(), 0, *iterChangedRegions, regionGeometry.m_patchSingleMaterial); } else { generateDecimatedMeshDataForRegion(volume.getVolumeData(), 1, *iterChangedRegions, regionGeometry.m_patchSingleMaterial); //adjustDecimatedGeometry(volume.getVolumeData(), regionGeometry, 1); }*/ //computeNormalsForVertices(volume.getVolumeData(), regionGeometry, CENTRAL_DIFFERENCE); //genMultiFromSingle(regionGeometry.m_patchSingleMaterial, regionGeometry.m_patchMultiMaterial); regionGeometry.m_bContainsSingleMaterialPatch = regionGeometry.m_patchSingleMaterial->getVertices().size() > 0; regionGeometry.m_bIsEmpty = (regionGeometry.m_patchSingleMaterial->getVertices().size() == 0) || (regionGeometry.m_patchSingleMaterial->getIndices().size() == 0); listChangedRegionGeometry.push_back(regionGeometry); } return listChangedRegionGeometry; } uint32 getIndex(uint32 x, uint32 y) { return x + (y * (POLYVOX_REGION_SIDE_LENGTH+1)); } void generateRoughMeshDataForRegion(BlockVolume* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch) { singleMaterialPatch->m_vecVertices.clear(); singleMaterialPatch->m_vecTriangleIndices.clear(); //For edge indices int32* vertexIndicesX0 = new int32[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; int32* vertexIndicesY0 = new int32[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; int32* vertexIndicesZ0 = new int32[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; int32* vertexIndicesX1 = new int32[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; int32* vertexIndicesY1 = new int32[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; int32* vertexIndicesZ1 = new int32[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; //Cell bitmasks uint8* bitmask0 = new uint8[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; uint8* bitmask1 = new uint8[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; //When generating the mesh for a region we actually look one voxel outside it in the // back, bottom, right direction. Protect against access violations by cropping region here Region regVolume = volumeData->getEnclosingRegion(); regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(1,1,1)); region.cropTo(regVolume); //Offset from volume corner const Vector3DFloat offset = static_cast(region.getLowerCorner()); //Create a region corresponding to the first slice Region regSlice0(region); regSlice0.setUpperCorner(Vector3DInt32(regSlice0.getUpperCorner().getX(),regSlice0.getUpperCorner().getY(),regSlice0.getLowerCorner().getZ())); //Iterator to access the volume data BlockVolumeIterator volIter(*volumeData); //Compute bitmask for initial slice uint32 uNoOfNonEmptyCellsForSlice0 = computeInitialRoughBitmaskForSlice(volIter, regSlice0, offset, bitmask0); if(uNoOfNonEmptyCellsForSlice0 != 0) { //If there were some non-empty cells then generate initial slice vertices for them generateRoughVerticesForSlice(volIter,regSlice0, offset, bitmask0, singleMaterialPatch, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0); } for(uint32 uSlice = 0; ((uSlice <= POLYVOX_REGION_SIDE_LENGTH-1) && (uSlice + offset.getZ() < region.getUpperCorner().getZ())); ++uSlice) { Region regSlice1(regSlice0); regSlice1.shift(Vector3DInt32(0,0,1)); uint32 uNoOfNonEmptyCellsForSlice1 = computeRoughBitmaskForSliceFromPrevious(volIter, regSlice1, offset, bitmask1, bitmask0); if(uNoOfNonEmptyCellsForSlice1 != 0) { generateRoughVerticesForSlice(volIter,regSlice1, offset, bitmask1, singleMaterialPatch, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1); } if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0)) { generateRoughIndicesForSlice(volIter, regSlice0, singleMaterialPatch, offset, bitmask0, bitmask1, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1); } std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1); std::swap(bitmask0, bitmask1); std::swap(vertexIndicesX0, vertexIndicesX1); std::swap(vertexIndicesY0, vertexIndicesY1); std::swap(vertexIndicesZ0, vertexIndicesZ1); regSlice0 = regSlice1; } delete[] bitmask0; delete[] bitmask1; delete[] vertexIndicesX0; delete[] vertexIndicesX1; delete[] vertexIndicesY0; delete[] vertexIndicesY1; delete[] vertexIndicesZ0; delete[] vertexIndicesZ1; } uint32 computeInitialRoughBitmaskForSlice(BlockVolumeIterator& volIter, const Region& regSlice, const Vector3DFloat& offset, uint8* bitmask) { uint32 uNoOfNonEmptyCells = 0; //Iterate over each cell in the region volIter.setPosition(regSlice.getLowerCorner().getX(),regSlice.getLowerCorner().getY(), regSlice.getLowerCorner().getZ()); volIter.setValidRegion(regSlice); do { //Current position const uint16 x = volIter.getPosX() - offset.getX(); const uint16 y = volIter.getPosY() - offset.getY(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8 iCubeIndex = 0; if((x==0) && (y==0)) { const uint8 v000 = volIter.getVoxel(); const uint8 v100 = volIter.peekVoxel1px0py0pz(); const uint8 v010 = volIter.peekVoxel0px1py0pz(); const uint8 v110 = volIter.peekVoxel1px1py0pz(); const uint8 v001 = volIter.peekVoxel0px0py1pz(); const uint8 v101 = volIter.peekVoxel1px0py1pz(); const uint8 v011 = volIter.peekVoxel0px1py1pz(); const uint8 v111 = volIter.peekVoxel1px1py1pz(); if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else if((x>0) && y==0) { const uint8 v100 = volIter.peekVoxel1px0py0pz(); const uint8 v110 = volIter.peekVoxel1px1py0pz(); const uint8 v101 = volIter.peekVoxel1px0py1pz(); const uint8 v111 = volIter.peekVoxel1px1py1pz(); //x uint8 iPreviousCubeIndexX = bitmask[getIndex(x-1,y)]; uint8 srcBit6 = iPreviousCubeIndexX & 64; uint8 destBit7 = srcBit6 << 1; uint8 srcBit5 = iPreviousCubeIndexX & 32; uint8 destBit4 = srcBit5 >> 1; uint8 srcBit2 = iPreviousCubeIndexX & 4; uint8 destBit3 = srcBit2 << 1; uint8 srcBit1 = iPreviousCubeIndexX & 2; uint8 destBit0 = srcBit1 >> 1; iCubeIndex |= destBit0; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; iCubeIndex |= destBit3; iCubeIndex |= destBit4; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } else if((x==0) && (y>0)) { const uint8 v010 = volIter.peekVoxel0px1py0pz(); const uint8 v110 = volIter.peekVoxel1px1py0pz(); const uint8 v011 = volIter.peekVoxel0px1py1pz(); const uint8 v111 = volIter.peekVoxel1px1py1pz(); //y uint8 iPreviousCubeIndexY = bitmask[getIndex(x,y-1)]; uint8 srcBit7 = iPreviousCubeIndexY & 128; uint8 destBit4 = srcBit7 >> 3; uint8 srcBit6 = iPreviousCubeIndexY & 64; uint8 destBit5 = srcBit6 >> 1; uint8 srcBit3 = iPreviousCubeIndexY & 8; uint8 destBit0 = srcBit3 >> 3; uint8 srcBit2 = iPreviousCubeIndexY & 4; uint8 destBit1 = srcBit2 >> 1; iCubeIndex |= destBit0; iCubeIndex |= destBit1; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else { const uint8 v110 = volIter.peekVoxel1px1py0pz(); const uint8 v111 = volIter.peekVoxel1px1py1pz(); //y uint8 iPreviousCubeIndexY = bitmask[getIndex(x,y-1)]; uint8 srcBit7 = iPreviousCubeIndexY & 128; uint8 destBit4 = srcBit7 >> 3; uint8 srcBit6 = iPreviousCubeIndexY & 64; uint8 destBit5 = srcBit6 >> 1; uint8 srcBit3 = iPreviousCubeIndexY & 8; uint8 destBit0 = srcBit3 >> 3; uint8 srcBit2 = iPreviousCubeIndexY & 4; uint8 destBit1 = srcBit2 >> 1; //x uint8 iPreviousCubeIndexX = bitmask[getIndex(x-1,y)]; srcBit6 = iPreviousCubeIndexX & 64; uint8 destBit7 = srcBit6 << 1; srcBit2 = iPreviousCubeIndexX & 4; uint8 destBit3 = srcBit2 << 1; iCubeIndex |= destBit0; iCubeIndex |= destBit1; if (v110 == 0) iCubeIndex |= 4; iCubeIndex |= destBit3; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } //Save the bitmask bitmask[getIndex(x,y)] = iCubeIndex; if(edgeTable[iCubeIndex] != 0) { ++uNoOfNonEmptyCells; } }while(volIter.moveForwardInRegionXYZ());//For each cell return uNoOfNonEmptyCells; } uint32 computeRoughBitmaskForSliceFromPrevious(BlockVolumeIterator& volIter, const Region& regSlice, const Vector3DFloat& offset, uint8* bitmask, uint8* previousBitmask) { uint32 uNoOfNonEmptyCells = 0; //Iterate over each cell in the region volIter.setPosition(regSlice.getLowerCorner().getX(),regSlice.getLowerCorner().getY(), regSlice.getLowerCorner().getZ()); volIter.setValidRegion(regSlice); do { //Current position const uint16 x = volIter.getPosX() - offset.getX(); const uint16 y = volIter.getPosY() - offset.getY(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8 iCubeIndex = 0; if((x==0) && (y==0)) { const uint8 v001 = volIter.peekVoxel0px0py1pz(); const uint8 v101 = volIter.peekVoxel1px0py1pz(); const uint8 v011 = volIter.peekVoxel0px1py1pz(); const uint8 v111 = volIter.peekVoxel1px1py1pz(); //z uint8 iPreviousCubeIndexZ = previousBitmask[getIndex(x,y)]; iCubeIndex = iPreviousCubeIndexZ >> 4; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else if((x>0) && y==0) { const uint8 v101 = volIter.peekVoxel1px0py1pz(); const uint8 v111 = volIter.peekVoxel1px1py1pz(); //z uint8 iPreviousCubeIndexZ = previousBitmask[getIndex(x,y)]; iCubeIndex = iPreviousCubeIndexZ >> 4; //x uint8 iPreviousCubeIndexX = bitmask[getIndex(x-1,y)]; uint8 srcBit6 = iPreviousCubeIndexX & 64; uint8 destBit7 = srcBit6 << 1; uint8 srcBit5 = iPreviousCubeIndexX & 32; uint8 destBit4 = srcBit5 >> 1; iCubeIndex |= destBit4; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } else if((x==0) && (y>0)) { const uint8 v011 = volIter.peekVoxel0px1py1pz(); const uint8 v111 = volIter.peekVoxel1px1py1pz(); //z uint8 iPreviousCubeIndexZ = previousBitmask[getIndex(x,y)]; iCubeIndex = iPreviousCubeIndexZ >> 4; //y uint8 iPreviousCubeIndexY = bitmask[getIndex(x,y-1)]; uint8 srcBit7 = iPreviousCubeIndexY & 128; uint8 destBit4 = srcBit7 >> 3; uint8 srcBit6 = iPreviousCubeIndexY & 64; uint8 destBit5 = srcBit6 >> 1; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else { const uint8 v111 = volIter.peekVoxel1px1py1pz(); //z uint8 iPreviousCubeIndexZ = previousBitmask[getIndex(x,y)]; iCubeIndex = iPreviousCubeIndexZ >> 4; //y uint8 iPreviousCubeIndexY = bitmask[getIndex(x,y-1)]; uint8 srcBit7 = iPreviousCubeIndexY & 128; uint8 destBit4 = srcBit7 >> 3; uint8 srcBit6 = iPreviousCubeIndexY & 64; uint8 destBit5 = srcBit6 >> 1; //x uint8 iPreviousCubeIndexX = bitmask[getIndex(x-1,y)]; srcBit6 = iPreviousCubeIndexX & 64; uint8 destBit7 = srcBit6 << 1; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } //Save the bitmask bitmask[getIndex(x,y)] = iCubeIndex; if(edgeTable[iCubeIndex] != 0) { ++uNoOfNonEmptyCells; } }while(volIter.moveForwardInRegionXYZ());//For each cell return uNoOfNonEmptyCells; } void generateRoughVerticesForSlice(BlockVolumeIterator& volIter, Region& regSlice, const Vector3DFloat& offset, uint8* bitmask, IndexedSurfacePatch* singleMaterialPatch,int32 vertexIndicesX[],int32 vertexIndicesY[],int32 vertexIndicesZ[]) { //Iterate over each cell in the region volIter.setPosition(regSlice.getLowerCorner().getX(),regSlice.getLowerCorner().getY(), regSlice.getLowerCorner().getZ()); volIter.setValidRegion(regSlice); //while(volIter.moveForwardInRegionXYZ()) do { //Current position const uint16 x = volIter.getPosX() - offset.getX(); const uint16 y = volIter.getPosY() - offset.getY(); const uint16 z = volIter.getPosZ() - offset.getZ(); const uint8 v000 = volIter.getVoxel(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8 iCubeIndex = bitmask[getIndex(x,y)]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { if((x + offset.getX()) != regSlice.getUpperCorner().getX()) { const uint8 v100 = volIter.peekVoxel1px0py0pz(); const Vector3DFloat v3dPosition(x + 0.5f, y, z); const Vector3DFloat v3dNormal(v000 > v100 ? 1.0f : -1.0f, 0.0f, 0.0f); const uint8 uMaterial = v000 | v100; //Because one of these is 0, the or operation takes the max. const SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); singleMaterialPatch->m_vecVertices.push_back(surfaceVertex); vertexIndicesX[getIndex(x,y)] = singleMaterialPatch->m_vecVertices.size()-1; } } if (edgeTable[iCubeIndex] & 8) { if((y + offset.getY()) != regSlice.getUpperCorner().getY()) { const uint8 v010 = volIter.peekVoxel0px1py0pz(); const Vector3DFloat v3dPosition(x, y + 0.5f, z); const Vector3DFloat v3dNormal(0.0f, v000 > v010 ? 1.0f : -1.0f, 0.0f); const uint8 uMaterial = v000 | v010; SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); singleMaterialPatch->m_vecVertices.push_back(surfaceVertex); vertexIndicesY[getIndex(x,y)] = singleMaterialPatch->m_vecVertices.size()-1; } } if (edgeTable[iCubeIndex] & 256) { //if((z + offset.getZ()) != upperCorner.getZ()) { const uint8 v001 = volIter.peekVoxel0px0py1pz(); const Vector3DFloat v3dPosition(x, y, z + 0.5f); const Vector3DFloat v3dNormal(0.0f, 0.0f, v000 > v001 ? 1.0f : -1.0f); const uint8 uMaterial = v000 | v001; SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); singleMaterialPatch->m_vecVertices.push_back(surfaceVertex); vertexIndicesZ[getIndex(x,y)] = singleMaterialPatch->m_vecVertices.size()-1; } } }while(volIter.moveForwardInRegionXYZ());//For each cell } void generateRoughIndicesForSlice(BlockVolumeIterator& volIter, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8* bitmask0, uint8* bitmask1, int32 vertexIndicesX0[],int32 vertexIndicesY0[],int32 vertexIndicesZ0[], int32 vertexIndicesX1[],int32 vertexIndicesY1[],int32 vertexIndicesZ1[]) { uint32 indlist[12]; Region regCroppedSlice(regSlice); regCroppedSlice.setUpperCorner(regCroppedSlice.getUpperCorner() - Vector3DInt32(1,1,0)); volIter.setPosition(regCroppedSlice.getLowerCorner().getX(),regCroppedSlice.getLowerCorner().getY(), regCroppedSlice.getLowerCorner().getZ()); volIter.setValidRegion(regCroppedSlice); do { //Current position const uint16 x = volIter.getPosX() - offset.getX(); const uint16 y = volIter.getPosY() - offset.getY(); const uint16 z = volIter.getPosZ() - offset.getZ(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8 iCubeIndex = bitmask0[getIndex(x,y)]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { indlist[0] = vertexIndicesX0[getIndex(x,y)]; assert(indlist[0] != -1); } if (edgeTable[iCubeIndex] & 2) { indlist[1] = vertexIndicesY0[getIndex(x+1,y)]; assert(indlist[1] != -1); } if (edgeTable[iCubeIndex] & 4) { indlist[2] = vertexIndicesX0[getIndex(x,y+1)]; assert(indlist[2] != -1); } if (edgeTable[iCubeIndex] & 8) { indlist[3] = vertexIndicesY0[getIndex(x,y)]; assert(indlist[3] != -1); } if (edgeTable[iCubeIndex] & 16) { indlist[4] = vertexIndicesX1[getIndex(x,y)]; assert(indlist[4] != -1); } if (edgeTable[iCubeIndex] & 32) { indlist[5] = vertexIndicesY1[getIndex(x+1,y)]; assert(indlist[5] != -1); } if (edgeTable[iCubeIndex] & 64) { indlist[6] = vertexIndicesX1[getIndex(x,y+1)]; assert(indlist[6] != -1); } if (edgeTable[iCubeIndex] & 128) { indlist[7] = vertexIndicesY1[getIndex(x,y)]; assert(indlist[7] != -1); } if (edgeTable[iCubeIndex] & 256) { indlist[8] = vertexIndicesZ0[getIndex(x,y)]; assert(indlist[8] != -1); } if (edgeTable[iCubeIndex] & 512) { indlist[9] = vertexIndicesZ0[getIndex(x+1,y)]; assert(indlist[9] != -1); } if (edgeTable[iCubeIndex] & 1024) { indlist[10] = vertexIndicesZ0[getIndex(x+1,y+1)]; assert(indlist[10] != -1); } if (edgeTable[iCubeIndex] & 2048) { indlist[11] = vertexIndicesZ0[getIndex(x,y+1)]; assert(indlist[11] != -1); } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { uint32 ind0 = indlist[triTable[iCubeIndex][i ]]; uint32 ind1 = indlist[triTable[iCubeIndex][i+1]]; uint32 ind2 = indlist[triTable[iCubeIndex][i+2]]; singleMaterialPatch->m_vecTriangleIndices.push_back(ind0); singleMaterialPatch->m_vecTriangleIndices.push_back(ind1); singleMaterialPatch->m_vecTriangleIndices.push_back(ind2); }//For each triangle }while(volIter.moveForwardInRegionXYZ());//For each cell } void generateReferenceMeshDataForRegion(BlockVolume* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch) { static int32 vertexIndicesX[POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1]; static int32 vertexIndicesY[POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1]; static int32 vertexIndicesZ[POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1]; memset(vertexIndicesX,0xFF,sizeof(vertexIndicesX)); //0xFF is -1 as two's complement - this may not be portable... memset(vertexIndicesY,0xFF,sizeof(vertexIndicesY)); memset(vertexIndicesZ,0xFF,sizeof(vertexIndicesZ)); //When generating the mesh for a region we actually look one voxel outside it in the // back, bottom, right direction. Protect against access violations by cropping region here Region regVolume = volumeData->getEnclosingRegion(); //regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(1,1,1)); region.cropTo(regVolume); region.setUpperCorner(region.getUpperCorner() - Vector3DInt32(1,1,1)); //Offset from lower block corner const Vector3DFloat offset = static_cast(region.getLowerCorner()); Vector3DFloat vertlist[12]; Vector3DFloat normlist[12]; uint8 vertMaterials[12]; BlockVolumeIterator volIter(*volumeData); volIter.setValidRegion(region); ////////////////////////////////////////////////////////////////////////// //Get mesh data ////////////////////////////////////////////////////////////////////////// //Iterate over each cell in the region volIter.setPosition(region.getLowerCorner().getX(),region.getLowerCorner().getY(), region.getLowerCorner().getZ()); while(volIter.moveForwardInRegionXYZ()) { //Current position const uint16 x = volIter.getPosX(); const uint16 y = volIter.getPosY(); const uint16 z = volIter.getPosZ(); //Voxels values const uint8 v000 = volIter.getVoxel(); const uint8 v100 = volIter.peekVoxel1px0py0pz(); const uint8 v010 = volIter.peekVoxel0px1py0pz(); const uint8 v110 = volIter.peekVoxel1px1py0pz(); const uint8 v001 = volIter.peekVoxel0px0py1pz(); const uint8 v101 = volIter.peekVoxel1px0py1pz(); const uint8 v011 = volIter.peekVoxel0px1py1pz(); const uint8 v111 = volIter.peekVoxel1px1py1pz(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8 iCubeIndex = 0; if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { vertlist[0].setX(x + 0.5f); vertlist[0].setY(y); vertlist[0].setZ(z); normlist[0].setX(v000 > v100 ? 1.0f : -1.0f); normlist[0].setY(0.0f); normlist[0].setZ(0.0f); vertMaterials[0] = v000 | v100; //Because one of these is 0, the or operation takes the max. } if (edgeTable[iCubeIndex] & 2) { vertlist[1].setX(x + 1.0f); vertlist[1].setY(y + 0.5f); vertlist[1].setZ(z); normlist[1].setX(0.0f); normlist[1].setY(v100 > v110 ? 1.0f : -1.0f); normlist[1].setZ(0.0f); vertMaterials[1] = v100 | v110; } if (edgeTable[iCubeIndex] & 4) { vertlist[2].setX(x + 0.5f); vertlist[2].setY(y + 1.0f); vertlist[2].setZ(z); normlist[2].setX(v010 > v110 ? 1.0f : -1.0f); normlist[2].setY(0.0f); normlist[2].setZ(0.0f); vertMaterials[2] = v010 | v110; } if (edgeTable[iCubeIndex] & 8) { vertlist[3].setX(x); vertlist[3].setY(y + 0.5f); vertlist[3].setZ(z); normlist[3].setX(0.0f); normlist[3].setY(v000 > v010 ? 1.0f : -1.0f); normlist[3].setZ(0.0f); vertMaterials[3] = v000 | v010; } if (edgeTable[iCubeIndex] & 16) { vertlist[4].setX(x + 0.5f); vertlist[4].setY(y); vertlist[4].setZ(z + 1.0f); normlist[4].setX(v001 > v101 ? 1.0f : -1.0f); normlist[4].setY(0.0f); normlist[4].setZ(0.0f); vertMaterials[4] = v001 | v101; } if (edgeTable[iCubeIndex] & 32) { vertlist[5].setX(x + 1.0f); vertlist[5].setY(y + 0.5f); vertlist[5].setZ(z + 1.0f); normlist[5].setX(0.0f); normlist[5].setY(v101 > v111 ? 1.0f : -1.0f); normlist[5].setZ(0.0f); vertMaterials[5] = v101 | v111; } if (edgeTable[iCubeIndex] & 64) { vertlist[6].setX(x + 0.5f); vertlist[6].setY(y + 1.0f); vertlist[6].setZ(z + 1.0f); normlist[6].setX(v011 > v111 ? 1.0f : -1.0f); normlist[6].setY(0.0f); normlist[6].setZ(0.0f); vertMaterials[6] = v011 | v111; } if (edgeTable[iCubeIndex] & 128) { vertlist[7].setX(x); vertlist[7].setY(y + 0.5f); vertlist[7].setZ(z + 1.0f); normlist[7].setX(0.0f); normlist[7].setY(v001 > v011 ? 1.0f : -1.0f); normlist[7].setZ(0.0f); vertMaterials[7] = v001 | v011; } if (edgeTable[iCubeIndex] & 256) { vertlist[8].setX(x); vertlist[8].setY(y); vertlist[8].setZ(z + 0.5f); normlist[8].setX(0.0f); normlist[8].setY(0.0f); normlist[8].setZ(v000 > v001 ? 1.0f : -1.0f); vertMaterials[8] = v000 | v001; } if (edgeTable[iCubeIndex] & 512) { vertlist[9].setX(x + 1.0f); vertlist[9].setY(y); vertlist[9].setZ(z + 0.5f); normlist[9].setX(0.0f); normlist[9].setY(0.0f); normlist[9].setZ(v100 > v101 ? 1.0f : -1.0f); vertMaterials[9] = v100 | v101; } if (edgeTable[iCubeIndex] & 1024) { vertlist[10].setX(x + 1.0f); vertlist[10].setY(y + 1.0f); vertlist[10].setZ(z + 0.5f); normlist[10].setX(0.0f); normlist[10].setY(0.0f); normlist[10].setZ(v110 > v111 ? 1.0f : -1.0f); vertMaterials[10] = v110 | v111; } if (edgeTable[iCubeIndex] & 2048) { vertlist[11].setX(x); vertlist[11].setY(y + 1.0f); vertlist[11].setZ(z + 0.5f); normlist[11].setX(0.0f); normlist[11].setY(0.0f); normlist[11].setZ(v010 > v011 ? 1.0f : -1.0f); vertMaterials[11] = v010 | v011; } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { //The three vertices forming a triangle const Vector3DFloat vertex0 = vertlist[triTable[iCubeIndex][i ]] - offset; const Vector3DFloat vertex1 = vertlist[triTable[iCubeIndex][i+1]] - offset; const Vector3DFloat vertex2 = vertlist[triTable[iCubeIndex][i+2]] - offset; const Vector3DFloat normal0 = normlist[triTable[iCubeIndex][i ]]; const Vector3DFloat normal1 = normlist[triTable[iCubeIndex][i+1]]; const Vector3DFloat normal2 = normlist[triTable[iCubeIndex][i+2]]; //Cast to floats and divide by two. //const Vector3DFloat vertex0AsFloat = (static_cast(vertex0) / 2.0f) - offset; //const Vector3DFloat vertex1AsFloat = (static_cast(vertex1) / 2.0f) - offset; //const Vector3DFloat vertex2AsFloat = (static_cast(vertex2) / 2.0f) - offset; const uint8 material0 = vertMaterials[triTable[iCubeIndex][i ]]; const uint8 material1 = vertMaterials[triTable[iCubeIndex][i+1]]; const uint8 material2 = vertMaterials[triTable[iCubeIndex][i+2]]; //If all the materials are the same, we just need one triangle for that material with all the alphas set high. SurfaceVertex v0(vertex0, normal0, material0 + 0.1f); SurfaceVertex v1(vertex1, normal1, material1 + 0.1f); SurfaceVertex v2(vertex2, normal2, material2 + 0.1f); //singleMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); int32 index = getIndexFor(v0.getPosition(), vertexIndicesX, vertexIndicesY, vertexIndicesZ); if(index == -1) { singleMaterialPatch->m_vecVertices.push_back(v0); singleMaterialPatch->m_vecTriangleIndices.push_back(singleMaterialPatch->m_vecVertices.size()-1); setIndexFor(v0.getPosition(), singleMaterialPatch->m_vecVertices.size()-1, vertexIndicesX, vertexIndicesY, vertexIndicesZ); } else { singleMaterialPatch->m_vecTriangleIndices.push_back(index); } index = getIndexFor(v1.getPosition(), vertexIndicesX, vertexIndicesY, vertexIndicesZ); if(index == -1) { singleMaterialPatch->m_vecVertices.push_back(v1); singleMaterialPatch->m_vecTriangleIndices.push_back(singleMaterialPatch->m_vecVertices.size()-1); setIndexFor(v1.getPosition(), singleMaterialPatch->m_vecVertices.size()-1, vertexIndicesX, vertexIndicesY, vertexIndicesZ); } else { singleMaterialPatch->m_vecTriangleIndices.push_back(index); } index = getIndexFor(v2.getPosition(), vertexIndicesX, vertexIndicesY, vertexIndicesZ); if(index == -1) { singleMaterialPatch->m_vecVertices.push_back(v2); singleMaterialPatch->m_vecTriangleIndices.push_back(singleMaterialPatch->m_vecVertices.size()-1); setIndexFor(v2.getPosition(), singleMaterialPatch->m_vecVertices.size()-1, vertexIndicesX, vertexIndicesY, vertexIndicesZ); } else { singleMaterialPatch->m_vecTriangleIndices.push_back(index); } }//For each triangle }//For each cell } int32 getIndexFor(const Vector3DFloat& pos, int32 vertexIndicesX[POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1], int32 vertexIndicesY[POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1], int32 vertexIndicesZ[POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1]) { assert(pos.getX() >= 0.0f); assert(pos.getY() >= 0.0f); assert(pos.getZ() >= 0.0f); assert(pos.getX() <= POLYVOX_REGION_SIDE_LENGTH); assert(pos.getY() <= POLYVOX_REGION_SIDE_LENGTH); assert(pos.getZ() <= POLYVOX_REGION_SIDE_LENGTH); float xIntPart; float xFracPart = std::modf(pos.getX(), &xIntPart); float yIntPart; float yFracPart = std::modf(pos.getY(), &yIntPart); float zIntPart; float zFracPart = std::modf(pos.getZ(), &zIntPart); //Of all the fractional parts, two should be zero and one should have a value. if(xFracPart > 0.000001f) { return vertexIndicesX[static_cast(xIntPart)][static_cast(yIntPart)][static_cast(zIntPart)]; } if(yFracPart > 0.000001f) { return vertexIndicesY[static_cast(xIntPart)][static_cast(yIntPart)][static_cast(zIntPart)]; } if(zFracPart > 0.000001f) { return vertexIndicesZ[static_cast(xIntPart)][static_cast(yIntPart)][static_cast(zIntPart)]; } while(true); } void setIndexFor(const Vector3DFloat& pos, int32 newIndex, int32 vertexIndicesX[POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1], int32 vertexIndicesY[POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1], int32 vertexIndicesZ[POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1]) { assert(pos.getX() >= 0.0f); assert(pos.getY() >= 0.0f); assert(pos.getZ() >= 0.0f); assert(pos.getX() <= POLYVOX_REGION_SIDE_LENGTH); assert(pos.getY() <= POLYVOX_REGION_SIDE_LENGTH); assert(pos.getZ() <= POLYVOX_REGION_SIDE_LENGTH); assert(newIndex < 10000); float xIntPart; float xFracPart = std::modf(pos.getX(), &xIntPart); float yIntPart; float yFracPart = std::modf(pos.getY(), &yIntPart); float zIntPart; float zFracPart = std::modf(pos.getZ(), &zIntPart); //Of all the fractional parts, two should be zero and one should have a value. if(xFracPart > 0.000001f) { vertexIndicesX[static_cast(xIntPart)][static_cast(yIntPart)][static_cast(zIntPart)] = newIndex; } if(yFracPart > 0.000001f) { vertexIndicesY[static_cast(xIntPart)][static_cast(yIntPart)][static_cast(zIntPart)] = newIndex; } if(zFracPart > 0.000001f) { vertexIndicesZ[static_cast(xIntPart)][static_cast(yIntPart)][static_cast(zIntPart)] = newIndex; } } }