/******************************************************************************* Copyright (c) 2005-2009 David Williams This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. *******************************************************************************/ #include "OpenGLWidget.h" #include "MaterialDensityPair.h" #include "CubicSurfaceExtractorWithNormals.h" #include "SurfaceMesh.h" #include "Volume.h" #include //Use the PolyVox namespace using namespace PolyVox; #include #define SAMPLE_SIZE 1024 class Perlin { public: Perlin(int octaves,float freq,float amp,int seed); float Get(float x,float y) { float vec[2]; vec[0] = x; vec[1] = y; return perlin_noise_2D(vec); }; float Get3D(float x,float y,float z) { float vec[3]; vec[0] = x; vec[1] = y; vec[2] = z; return perlin_noise_3D(vec); }; private: void init_perlin(int n,float p); float perlin_noise_2D(float vec[2]); float perlin_noise_3D(float vec[3]); float noise1(float arg); float noise2(float vec[2]); float noise3(float vec[3]); void normalize2(float v[2]); void normalize3(float v[3]); void init(void); int mOctaves; float mFrequency; float mAmplitude; int mSeed; int p[SAMPLE_SIZE + SAMPLE_SIZE + 2]; float g3[SAMPLE_SIZE + SAMPLE_SIZE + 2][3]; float g2[SAMPLE_SIZE + SAMPLE_SIZE + 2][2]; float g1[SAMPLE_SIZE + SAMPLE_SIZE + 2]; bool mStart; }; #include #include #include #define B SAMPLE_SIZE #define BM (SAMPLE_SIZE-1) #define N 0x1000 #define NP 12 /* 2^N */ #define NM 0xfff #define s_curve(t) ( t * t * (3.0f - 2.0f * t) ) #define lerp(t, a, b) ( a + t * (b - a) ) #define setup(i,b0,b1,r0,r1)\ t = vec[i] + N;\ b0 = ((int)t) & BM;\ b1 = (b0+1) & BM;\ r0 = t - (int)t;\ r1 = r0 - 1.0f; float Perlin::noise1(float arg) { int bx0, bx1; float rx0, rx1, sx, t, u, v, vec[1]; vec[0] = arg; if (mStart) { srand(mSeed); mStart = false; init(); } setup(0, bx0,bx1, rx0,rx1); sx = s_curve(rx0); u = rx0 * g1[ p[ bx0 ] ]; v = rx1 * g1[ p[ bx1 ] ]; return lerp(sx, u, v); } float Perlin::noise2(float vec[2]) { int bx0, bx1, by0, by1, b00, b10, b01, b11; float rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v; int i, j; if (mStart) { srand(mSeed); mStart = false; init(); } setup(0,bx0,bx1,rx0,rx1); setup(1,by0,by1,ry0,ry1); i = p[bx0]; j = p[bx1]; b00 = p[i + by0]; b10 = p[j + by0]; b01 = p[i + by1]; b11 = p[j + by1]; sx = s_curve(rx0); sy = s_curve(ry0); #define at2(rx,ry) ( rx * q[0] + ry * q[1] ) q = g2[b00]; u = at2(rx0,ry0); q = g2[b10]; v = at2(rx1,ry0); a = lerp(sx, u, v); q = g2[b01]; u = at2(rx0,ry1); q = g2[b11]; v = at2(rx1,ry1); b = lerp(sx, u, v); return lerp(sy, a, b); } float Perlin::noise3(float vec[3]) { int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11; float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v; int i, j; if (mStart) { srand(mSeed); mStart = false; init(); } setup(0, bx0,bx1, rx0,rx1); setup(1, by0,by1, ry0,ry1); setup(2, bz0,bz1, rz0,rz1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; t = s_curve(rx0); sy = s_curve(ry0); sz = s_curve(rz0); #define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] ) q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0); q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0); a = lerp(t, u, v); q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0); q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0); b = lerp(t, u, v); c = lerp(sy, a, b); q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1); q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1); a = lerp(t, u, v); q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1); q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1); b = lerp(t, u, v); d = lerp(sy, a, b); return lerp(sz, c, d); } void Perlin::normalize2(float v[2]) { float s; s = (float)sqrt(v[0] * v[0] + v[1] * v[1]); s = 1.0f/s; v[0] = v[0] * s; v[1] = v[1] * s; } void Perlin::normalize3(float v[3]) { float s; s = (float)sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); s = 1.0f/s; v[0] = v[0] * s; v[1] = v[1] * s; v[2] = v[2] * s; } void Perlin::init(void) { int i, j, k; for (i = 0 ; i < B ; i++) { p[i] = i; g1[i] = (float)((rand() % (B + B)) - B) / B; for (j = 0 ; j < 2 ; j++) g2[i][j] = (float)((rand() % (B + B)) - B) / B; normalize2(g2[i]); for (j = 0 ; j < 3 ; j++) g3[i][j] = (float)((rand() % (B + B)) - B) / B; normalize3(g3[i]); } while (--i) { k = p[i]; p[i] = p[j = rand() % B]; p[j] = k; } for (i = 0 ; i < B + 2 ; i++) { p[B + i] = p[i]; g1[B + i] = g1[i]; for (j = 0 ; j < 2 ; j++) g2[B + i][j] = g2[i][j]; for (j = 0 ; j < 3 ; j++) g3[B + i][j] = g3[i][j]; } } float Perlin::perlin_noise_2D(float vec[2]) { int terms = mOctaves; float freq = mFrequency; float result = 0.0f; float amp = mAmplitude; vec[0]*=mFrequency; vec[1]*=mFrequency; for( int i=0; i& volData) { Perlin perlin(2,8,1,234); for(int z = 1; z < volData.getDepth()-1; z++) { std::cout << z << std::endl; for(int y = 1; y < volData.getHeight()-1; y++) { for(int x = 1; x < volData.getWidth()-1; x++) { float perlinVal = perlin.Get3D(x /static_cast(volData.getWidth()-1), (y) / static_cast(volData.getHeight()-1), z / static_cast(volData.getDepth()-1)); MaterialDensityPair44 voxel; if(perlinVal < 0.0f) { voxel.setMaterial(245); voxel.setDensity(MaterialDensityPair44::getMaxDensity()); } else { voxel.setMaterial(0); voxel.setDensity(MaterialDensityPair44::getMinDensity()); } volData.setVoxelAt(x, y, z, voxel); } } } } void createPerlinVolumeFast(Volume& volData) { Perlin perlin(2,8,1,234); for(int blockZ = 0; blockZ < volData.m_uDepthInBlocks; blockZ++) { std::cout << blockZ << std::endl; for(int blockY = 0; blockY < volData.m_uHeightInBlocks; blockY++) { for(int blockX = 0; blockX < volData.m_uWidthInBlocks; blockX++) { for(int offsetz = 0; offsetz < volData.m_uBlockSideLength; offsetz++) { for(int offsety = 0; offsety < volData.m_uBlockSideLength; offsety++) { for(int offsetx = 0; offsetx < volData.m_uBlockSideLength; offsetx++) { int x = blockX * volData.m_uBlockSideLength + offsetx; int y = blockY * volData.m_uBlockSideLength + offsety; int z = blockZ * volData.m_uBlockSideLength + offsetz; if((x == 0) || (x == volData.getWidth()-1)) continue; if((y == 0) || (y == volData.getHeight()-1)) continue; if((z == 0) || (z == volData.getDepth()-1)) continue; float perlinVal = perlin.Get3D(x /static_cast(volData.getWidth()-1), (y) / static_cast(volData.getHeight()-1), z / static_cast(volData.getDepth()-1)); MaterialDensityPair44 voxel; if(perlinVal < 0.0f) { voxel.setMaterial(245); voxel.setDensity(MaterialDensityPair44::getMaxDensity()); } else { voxel.setMaterial(0); voxel.setDensity(MaterialDensityPair44::getMinDensity()); } volData.setVoxelAt(x, y, z, voxel); } } } } } } } void createSphereInVolume(Volume& volData, Vector3DFloat v3dVolCenter, float fRadius) { //This vector hold the position of the center of the volume //Vector3DFloat v3dVolCenter(volData.getWidth() / 2, volData.getHeight() / 2, volData.getDepth() / 2); int iRadius = fRadius; //This three-level for loop iterates over every voxel in the volume for (int z = v3dVolCenter.getZ() - iRadius; z <= v3dVolCenter.getZ() + iRadius; z++) { for (int y = v3dVolCenter.getY() - iRadius; y <= v3dVolCenter.getY() + iRadius; y++) { for (int x = v3dVolCenter.getX() - iRadius; x <= v3dVolCenter.getX() + iRadius; x++) { //Store our current position as a vector... Vector3DFloat v3dCurrentPos(x,y,z); //And compute how far the current position is from the center of the volume float fDistToCenter = (v3dCurrentPos - v3dVolCenter).length(); //If the current voxel is less than 'radius' units from the center then we make it solid. if(fDistToCenter <= fRadius) { //Our new density value uint8_t uDensity = MaterialDensityPair44::getMaxDensity(); //Get the old voxel MaterialDensityPair44 voxel = volData.getVoxelAt(x,y,z); //Modify the density voxel.setDensity(uDensity); //Wrte the voxel value into the volume volData.setVoxelAt(x, y, z, voxel); } } } } } int main(int argc, char *argv[]) { //Create and show the Qt OpenGL window QApplication app(argc, argv); OpenGLWidget openGLWidget(0); openGLWidget.show(); //Create an empty volume and then place a sphere in it Volume volData(256, 256, 256); //createSphereInVolume(volData, 30); createPerlinVolumeFast(volData); /*srand(12345); for(int ct = 0; ct < 1000; ct++) { std::cout << ct << std::endl; int x = rand() % volData.getWidth(); int y = rand() % volData.getHeight(); int z = rand() % volData.getDepth(); int r = rand() % 20; createSphereInVolume(volData, Vector3DFloat(x,y,z), r); }*/ //Extract the surface SurfaceMesh mesh; CubicSurfaceExtractorWithNormals surfaceExtractor(&volData, volData.getEnclosingRegion(), &mesh); surfaceExtractor.execute(); //Pass the surface to the OpenGL window openGLWidget.setSurfaceMeshToRender(mesh); //Run the message pump. return app.exec(); }