#pragma region License /****************************************************************************** This file is part of the PolyVox library Copyright (C) 2006 David Williams This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ******************************************************************************/ #pragma endregion #include "PolyVoxCore/PolyVoxImpl/DecimatedSurfaceExtractor.h" #include "PolyVoxCore/Volume.h" #include "PolyVoxCore/GradientEstimators.h" #include "PolyVoxCore/IndexedSurfacePatch.h" #include "PolyVoxCore/MarchingCubesTables.h" #include "PolyVoxCore/Region.h" #include "PolyVoxCore/VolumeIterator.h" #include using namespace std; namespace PolyVox { uint32_t getDecimatedIndex(uint32_t x, uint32_t y , uint32_t regionWidth) { return x + (y * (regionWidth+1)); } void extractDecimatedSurfaceImpl(Volume* volumeData, uint8_t uLevel, Region region, IndexedSurfacePatch* singleMaterialPatch) { singleMaterialPatch->clear(); //For edge indices //FIXME - do the slices need to be this big? Surely for a decimated mesh they can be smaller? //FIXME - Instead of region.width()+2 we used to use POLYVOX_REGION_SIDE_LENGTH+1 //Normally POLYVOX_REGION_SIDE_LENGTH is the same as region.width() (often 32) but at the //edges of the volume it is 1 smaller. Need to think what values really belong here. int32_t* vertexIndicesX0 = new int32_t[(region.width()+2) * (region.height()+2)]; int32_t* vertexIndicesY0 = new int32_t[(region.width()+2) * (region.height()+2)]; int32_t* vertexIndicesZ0 = new int32_t[(region.width()+2) * (region.height()+2)]; int32_t* vertexIndicesX1 = new int32_t[(region.width()+2) * (region.height()+2)]; int32_t* vertexIndicesY1 = new int32_t[(region.width()+2) * (region.height()+2)]; int32_t* vertexIndicesZ1 = new int32_t[(region.width()+2) * (region.height()+2)]; //Cell bitmasks uint8_t* bitmask0 = new uint8_t[(region.width()+2) * (region.height()+2)]; uint8_t* bitmask1 = new uint8_t[(region.width()+2) * (region.height()+2)]; const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel; //When generating the mesh for a region we actually look outside it in the // back, bottom, right direction. Protect against access violations by cropping region here Region regVolume = volumeData->getEnclosingRegion(); regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(2*uStepSize-1,2*uStepSize-1,2*uStepSize-1)); region.cropTo(regVolume); //Offset from volume corner const Vector3DFloat offset = static_cast(region.getLowerCorner()); //Create a region corresponding to the first slice Region regSlice0(region); Vector3DInt32 v3dUpperCorner = regSlice0.getUpperCorner(); v3dUpperCorner.setZ(regSlice0.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick. regSlice0.setUpperCorner(v3dUpperCorner); //Iterator to access the volume data VolumeIterator volIter(*volumeData); //Compute bitmask for initial slice uint32_t uNoOfNonEmptyCellsForSlice0 = computeInitialDecimatedBitmaskForSlice(volIter, uLevel, regSlice0, offset, bitmask0); if(uNoOfNonEmptyCellsForSlice0 != 0) { //If there were some non-empty cells then generate initial slice vertices for them generateDecimatedVerticesForSlice(volIter, uLevel, regSlice0, offset, bitmask0, singleMaterialPatch, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0); } for(uint32_t uSlice = 1; ((uSlice <= region.depth()) && (uSlice + offset.getZ() <= regVolume.getUpperCorner().getZ())); uSlice += uStepSize) { Region regSlice1(regSlice0); regSlice1.shift(Vector3DInt32(0,0,uStepSize)); uint32_t uNoOfNonEmptyCellsForSlice1 = computeDecimatedBitmaskForSliceFromPrevious(volIter, uLevel, regSlice1, offset, bitmask1, bitmask0); if(uNoOfNonEmptyCellsForSlice1 != 0) { generateDecimatedVerticesForSlice(volIter, uLevel, regSlice1, offset, bitmask1, singleMaterialPatch, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1); } if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0)) { generateDecimatedIndicesForSlice(volIter, uLevel, regSlice0, singleMaterialPatch, offset, bitmask0, bitmask1, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1); } std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1); std::swap(bitmask0, bitmask1); std::swap(vertexIndicesX0, vertexIndicesX1); std::swap(vertexIndicesY0, vertexIndicesY1); std::swap(vertexIndicesZ0, vertexIndicesZ1); regSlice0 = regSlice1; } delete[] bitmask0; delete[] bitmask1; delete[] vertexIndicesX0; delete[] vertexIndicesX1; delete[] vertexIndicesY0; delete[] vertexIndicesY1; delete[] vertexIndicesZ0; delete[] vertexIndicesZ1; /*std::vector::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != singleMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeDecimatedNormal(volumeData, static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; }*/ } uint32_t computeInitialDecimatedBitmaskForSlice(VolumeIterator& volIter, uint8_t uLevel, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask) { const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel; uint32_t uNoOfNonEmptyCells = 0; //Iterate over each cell in the region for(uint16_t y = regSlice.getLowerCorner().getY(); y <= regSlice.getUpperCorner().getY(); y += uStepSize) { for(uint16_t x = regSlice.getLowerCorner().getX(); x <= regSlice.getUpperCorner().getX(); x += uStepSize) { //Current position volIter.setPosition(x,y,regSlice.getLowerCorner().getZ()); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if((x==regSlice.getLowerCorner().getX()) && (y==regSlice.getLowerCorner().getY())) { volIter.setPosition(x,y,regSlice.getLowerCorner().getZ()); const uint8_t v000 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y,regSlice.getLowerCorner().getZ()); const uint8_t v100 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x,y+uStepSize,regSlice.getLowerCorner().getZ()); const uint8_t v010 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()); const uint8_t v110 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x,y,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v001 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v101 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v011 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(uLevel); if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else if((x>regSlice.getLowerCorner().getX()) && y==regSlice.getLowerCorner().getY()) { volIter.setPosition(x+uStepSize,y,regSlice.getLowerCorner().getZ()); const uint8_t v100 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()); const uint8_t v110 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v101 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(uLevel); //x uint8_t iPreviousCubeIndexX = bitmask[getDecimatedIndex(x- offset.getX()-uStepSize,y- offset.getY(), regSlice.width()+1)]; uint8_t srcBit6 = iPreviousCubeIndexX & 64; uint8_t destBit7 = srcBit6 << 1; uint8_t srcBit5 = iPreviousCubeIndexX & 32; uint8_t destBit4 = srcBit5 >> 1; uint8_t srcBit2 = iPreviousCubeIndexX & 4; uint8_t destBit3 = srcBit2 << 1; uint8_t srcBit1 = iPreviousCubeIndexX & 2; uint8_t destBit0 = srcBit1 >> 1; iCubeIndex |= destBit0; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; iCubeIndex |= destBit3; iCubeIndex |= destBit4; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } else if((x==regSlice.getLowerCorner().getX()) && (y>regSlice.getLowerCorner().getY())) { volIter.setPosition(x,y+uStepSize,regSlice.getLowerCorner().getZ()); const uint8_t v010 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()); const uint8_t v110 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v011 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(uLevel); //y uint8_t iPreviousCubeIndexY = bitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY()-uStepSize, regSlice.width()+1)]; uint8_t srcBit7 = iPreviousCubeIndexY & 128; uint8_t destBit4 = srcBit7 >> 3; uint8_t srcBit6 = iPreviousCubeIndexY & 64; uint8_t destBit5 = srcBit6 >> 1; uint8_t srcBit3 = iPreviousCubeIndexY & 8; uint8_t destBit0 = srcBit3 >> 3; uint8_t srcBit2 = iPreviousCubeIndexY & 4; uint8_t destBit1 = srcBit2 >> 1; iCubeIndex |= destBit0; iCubeIndex |= destBit1; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else { volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()); const uint8_t v110 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(uLevel); //y uint8_t iPreviousCubeIndexY = bitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY()-uStepSize, regSlice.width()+1)]; uint8_t srcBit7 = iPreviousCubeIndexY & 128; uint8_t destBit4 = srcBit7 >> 3; uint8_t srcBit6 = iPreviousCubeIndexY & 64; uint8_t destBit5 = srcBit6 >> 1; uint8_t srcBit3 = iPreviousCubeIndexY & 8; uint8_t destBit0 = srcBit3 >> 3; uint8_t srcBit2 = iPreviousCubeIndexY & 4; uint8_t destBit1 = srcBit2 >> 1; //x uint8_t iPreviousCubeIndexX = bitmask[getDecimatedIndex(x- offset.getX()-uStepSize,y- offset.getY(), regSlice.width()+1)]; srcBit6 = iPreviousCubeIndexX & 64; uint8_t destBit7 = srcBit6 << 1; srcBit2 = iPreviousCubeIndexX & 4; uint8_t destBit3 = srcBit2 << 1; iCubeIndex |= destBit0; iCubeIndex |= destBit1; if (v110 == 0) iCubeIndex |= 4; iCubeIndex |= destBit3; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } //Save the bitmask bitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY(), regSlice.width()+1)] = iCubeIndex; if(edgeTable[iCubeIndex] != 0) { ++uNoOfNonEmptyCells; } } } return uNoOfNonEmptyCells; } uint32_t computeDecimatedBitmaskForSliceFromPrevious(VolumeIterator& volIter, uint8_t uLevel, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, uint8_t* previousBitmask) { const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel; uint32_t uNoOfNonEmptyCells = 0; //Iterate over each cell in the region for(uint16_t y = regSlice.getLowerCorner().getY(); y <= regSlice.getUpperCorner().getY(); y += uStepSize) { for(uint16_t x = regSlice.getLowerCorner().getX(); x <= regSlice.getUpperCorner().getX(); x += uStepSize) { //Current position volIter.setPosition(x,y,regSlice.getLowerCorner().getZ()); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if((x==regSlice.getLowerCorner().getX()) && (y==regSlice.getLowerCorner().getY())) { volIter.setPosition(x,y,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v001 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v101 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v011 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(uLevel); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY(), regSlice.width()+1)]; iCubeIndex = iPreviousCubeIndexZ >> 4; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else if((x>regSlice.getLowerCorner().getX()) && y==regSlice.getLowerCorner().getY()) { volIter.setPosition(x+uStepSize,y,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v101 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(uLevel); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY(), regSlice.width()+1)]; iCubeIndex = iPreviousCubeIndexZ >> 4; //x uint8_t iPreviousCubeIndexX = bitmask[getDecimatedIndex(x- offset.getX()-uStepSize,y- offset.getY(), regSlice.width()+1)]; uint8_t srcBit6 = iPreviousCubeIndexX & 64; uint8_t destBit7 = srcBit6 << 1; uint8_t srcBit5 = iPreviousCubeIndexX & 32; uint8_t destBit4 = srcBit5 >> 1; iCubeIndex |= destBit4; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } else if((x==regSlice.getLowerCorner().getX()) && (y>regSlice.getLowerCorner().getY())) { volIter.setPosition(x,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v011 = volIter.getSubSampledVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(uLevel); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY(), regSlice.width()+1)]; iCubeIndex = iPreviousCubeIndexZ >> 4; //y uint8_t iPreviousCubeIndexY = bitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY()-uStepSize, regSlice.width()+1)]; uint8_t srcBit7 = iPreviousCubeIndexY & 128; uint8_t destBit4 = srcBit7 >> 3; uint8_t srcBit6 = iPreviousCubeIndexY & 64; uint8_t destBit5 = srcBit6 >> 1; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else { volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(uLevel); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY(), regSlice.width()+1)]; iCubeIndex = iPreviousCubeIndexZ >> 4; //y uint8_t iPreviousCubeIndexY = bitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY()-uStepSize, regSlice.width()+1)]; uint8_t srcBit7 = iPreviousCubeIndexY & 128; uint8_t destBit4 = srcBit7 >> 3; uint8_t srcBit6 = iPreviousCubeIndexY & 64; uint8_t destBit5 = srcBit6 >> 1; //x uint8_t iPreviousCubeIndexX = bitmask[getDecimatedIndex(x- offset.getX()-uStepSize,y- offset.getY(), regSlice.width()+1)]; srcBit6 = iPreviousCubeIndexX & 64; uint8_t destBit7 = srcBit6 << 1; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } //Save the bitmask bitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY(), regSlice.width()+1)] = iCubeIndex; if(edgeTable[iCubeIndex] != 0) { ++uNoOfNonEmptyCells; } }//For each cell } return uNoOfNonEmptyCells; } void generateDecimatedVerticesForSlice(VolumeIterator& volIter, uint8_t uLevel, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,int32_t vertexIndicesX[],int32_t vertexIndicesY[],int32_t vertexIndicesZ[]) { const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel; //Iterate over each cell in the region for(uint16_t y = regSlice.getLowerCorner().getY(); y <= regSlice.getUpperCorner().getY(); y += uStepSize) { for(uint16_t x = regSlice.getLowerCorner().getX(); x <= regSlice.getUpperCorner().getX(); x += uStepSize) { //Current position const uint16_t z = regSlice.getLowerCorner().getZ(); volIter.setPosition(x,y,z); const uint8_t v000 = volIter.getSubSampledVoxel(uLevel); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = bitmask[getDecimatedIndex(x - offset.getX(),y - offset.getY(), regSlice.width()+1)]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { if(x != regSlice.getUpperCorner().getX()) { volIter.setPosition(x + uStepSize,y,z); const uint8_t v100 = volIter.getSubSampledVoxel(uLevel); const Vector3DFloat v3dPosition(x - offset.getX() + 0.5f * uStepSize, y - offset.getY(), z - offset.getZ()); const Vector3DFloat v3dNormal(v000 > v100 ? 1.0f : -1.0f,0.0,0.0); const uint8_t uMaterial = v000 | v100; //Because one of these is 0, the or operation takes the max. SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex); vertexIndicesX[getDecimatedIndex(x - offset.getX(),y - offset.getY(), regSlice.width()+1)] = uLastVertexIndex; } } if (edgeTable[iCubeIndex] & 8) { if(y != regSlice.getUpperCorner().getY()) { volIter.setPosition(x,y + uStepSize,z); const uint8_t v010 = volIter.getSubSampledVoxel(uLevel); const Vector3DFloat v3dPosition(x - offset.getX(), y - offset.getY() + 0.5f * uStepSize, z - offset.getZ()); const Vector3DFloat v3dNormal(0.0,v000 > v010 ? 1.0f : -1.0f,0.0); const uint8_t uMaterial = v000 | v010; //Because one of these is 0, the or operation takes the max. SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex); vertexIndicesY[getDecimatedIndex(x - offset.getX(),y - offset.getY(), regSlice.width()+1)] = uLastVertexIndex; } } if (edgeTable[iCubeIndex] & 256) { //if(z != regSlice.getUpperCorner.getZ()) { volIter.setPosition(x,y,z + uStepSize); const uint8_t v001 = volIter.getSubSampledVoxel(uLevel); const Vector3DFloat v3dPosition(x - offset.getX(), y - offset.getY(), z - offset.getZ() + 0.5f * uStepSize); const Vector3DFloat v3dNormal(0.0,0.0,v000 > v001 ? 1.0f : -1.0f); const uint8_t uMaterial = v000 | v001; //Because one of these is 0, the or operation takes the max. const SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex); vertexIndicesZ[getDecimatedIndex(x - offset.getX(),y - offset.getY(), regSlice.width()+1)] = uLastVertexIndex; } } }//For each cell } } void generateDecimatedIndicesForSlice(VolumeIterator& volIter, uint8_t uLevel, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8_t* bitmask0, uint8_t* bitmask1, int32_t vertexIndicesX0[],int32_t vertexIndicesY0[],int32_t vertexIndicesZ0[], int32_t vertexIndicesX1[],int32_t vertexIndicesY1[],int32_t vertexIndicesZ1[]) { const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel; uint32_t indlist[12]; for(uint16_t y = regSlice.getLowerCorner().getY() - offset.getY(); y < regSlice.getUpperCorner().getY() - offset.getY(); y += uStepSize) { for(uint16_t x = regSlice.getLowerCorner().getX() - offset.getX(); x < regSlice.getUpperCorner().getX() - offset.getX(); x += uStepSize) { //Current position const uint16_t z = regSlice.getLowerCorner().getZ() - offset.getZ(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = bitmask0[getDecimatedIndex(x,y, regSlice.width()+1)]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { indlist[0] = vertexIndicesX0[getDecimatedIndex(x,y, regSlice.width()+1)]; assert(indlist[0] != -1); } if (edgeTable[iCubeIndex] & 2) { indlist[1] = vertexIndicesY0[getDecimatedIndex(x+uStepSize,y, regSlice.width()+1)]; assert(indlist[1] != -1); } if (edgeTable[iCubeIndex] & 4) { indlist[2] = vertexIndicesX0[getDecimatedIndex(x,y+uStepSize, regSlice.width()+1)]; assert(indlist[2] != -1); } if (edgeTable[iCubeIndex] & 8) { indlist[3] = vertexIndicesY0[getDecimatedIndex(x,y, regSlice.width()+1)]; assert(indlist[3] != -1); } if (edgeTable[iCubeIndex] & 16) { indlist[4] = vertexIndicesX1[getDecimatedIndex(x,y, regSlice.width()+1)]; assert(indlist[4] != -1); } if (edgeTable[iCubeIndex] & 32) { indlist[5] = vertexIndicesY1[getDecimatedIndex(x+uStepSize,y, regSlice.width()+1)]; assert(indlist[5] != -1); } if (edgeTable[iCubeIndex] & 64) { indlist[6] = vertexIndicesX1[getDecimatedIndex(x,y+uStepSize, regSlice.width()+1)]; assert(indlist[6] != -1); } if (edgeTable[iCubeIndex] & 128) { indlist[7] = vertexIndicesY1[getDecimatedIndex(x,y, regSlice.width()+1)]; assert(indlist[7] != -1); } if (edgeTable[iCubeIndex] & 256) { indlist[8] = vertexIndicesZ0[getDecimatedIndex(x,y, regSlice.width()+1)]; assert(indlist[8] != -1); } if (edgeTable[iCubeIndex] & 512) { indlist[9] = vertexIndicesZ0[getDecimatedIndex(x+uStepSize,y, regSlice.width()+1)]; assert(indlist[9] != -1); } if (edgeTable[iCubeIndex] & 1024) { indlist[10] = vertexIndicesZ0[getDecimatedIndex(x+uStepSize,y+uStepSize, regSlice.width()+1)]; assert(indlist[10] != -1); } if (edgeTable[iCubeIndex] & 2048) { indlist[11] = vertexIndicesZ0[getDecimatedIndex(x,y+uStepSize, regSlice.width()+1)]; assert(indlist[11] != -1); } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { uint32_t ind0 = indlist[triTable[iCubeIndex][i ]]; uint32_t ind1 = indlist[triTable[iCubeIndex][i+1]]; uint32_t ind2 = indlist[triTable[iCubeIndex][i+2]]; singleMaterialPatch->addTriangle(ind0, ind1, ind2); }//For each triangle }//For each cell } } }