#pragma region License /****************************************************************************** This file is part of the PolyVox library Copyright (C) 2006 David Williams This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ******************************************************************************/ #pragma endregion #include "PolyVoxCore/PolyVoxImpl/ReferenceSurfaceExtractor.h" #include "PolyVoxCore/Volume.h" #include "PolyVoxCore/VolumeIterator.h" #include "PolyVoxCore/IndexedSurfacePatch.h" #include "PolyVoxCore/MarchingCubesTables.h" #include "PolyVoxCore/Region.h" #include "PolyVoxCore/SurfaceVertex.h" #include "PolyVoxCore/Vector.h" namespace PolyVox { void extractReferenceSurfaceImpl(Volume* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch) { /*static int32_t vertexIndicesX[POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1]; static int32_t vertexIndicesY[POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1]; static int32_t vertexIndicesZ[POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1][POLYVOX_REGION_SIDE_LENGTH+1];*/ Vector3DInt32 regionDimensions = region.dimensions() + Vector3DInt32(1,1,1); std::vector vertexIndicesX(regionDimensions.getX() * regionDimensions.getY() * regionDimensions.getZ()); std::vector vertexIndicesY(regionDimensions.getX() * regionDimensions.getY() * regionDimensions.getZ()); std::vector vertexIndicesZ(regionDimensions.getX() * regionDimensions.getY() * regionDimensions.getZ()); memset(&vertexIndicesX[0],0xFF,sizeof(vertexIndicesX[0]) * vertexIndicesX.size()); //0xFF is -1 as two's complement - this may not be portable... memset(&vertexIndicesY[0],0xFF,sizeof(vertexIndicesY[0]) * vertexIndicesY.size()); //FIXME - can we just use sizeof(vertexIndicesY)? memset(&vertexIndicesZ[0],0xFF,sizeof(vertexIndicesZ[0]) * vertexIndicesZ.size()); //When generating the mesh for a region we actually look one voxel outside it in the // back, bottom, right direction. Protect against access violations by cropping region here Region regVolume = volumeData->getEnclosingRegion(); //regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(1,1,1)); region.cropTo(regVolume); region.setUpperCorner(region.getUpperCorner() - Vector3DInt32(1,1,1)); //Offset from lower block corner const Vector3DFloat offset = static_cast(region.getLowerCorner()); Vector3DFloat vertlist[12]; Vector3DFloat normlist[12]; uint8_t vertMaterials[12]; VolumeIterator volIter(*volumeData); volIter.setValidRegion(region); ////////////////////////////////////////////////////////////////////////// //Get mesh data ////////////////////////////////////////////////////////////////////////// //Iterate over each cell in the region volIter.setPosition(region.getLowerCorner().getX(),region.getLowerCorner().getY(), region.getLowerCorner().getZ()); while(volIter.moveForwardInRegionXYZ()) { //Current position const uint16_t x = volIter.getPosX(); const uint16_t y = volIter.getPosY(); const uint16_t z = volIter.getPosZ(); //Voxels values const uint8_t v000 = volIter.getVoxel(); const uint8_t v100 = volIter.peekVoxel1px0py0pz(); const uint8_t v010 = volIter.peekVoxel0px1py0pz(); const uint8_t v110 = volIter.peekVoxel1px1py0pz(); const uint8_t v001 = volIter.peekVoxel0px0py1pz(); const uint8_t v101 = volIter.peekVoxel1px0py1pz(); const uint8_t v011 = volIter.peekVoxel0px1py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { vertlist[0].setX(x + 0.5f); vertlist[0].setY(y); vertlist[0].setZ(z); normlist[0].setX(v000 > v100 ? 1.0f : -1.0f); normlist[0].setY(0.0f); normlist[0].setZ(0.0f); vertMaterials[0] = v000 | v100; //Because one of these is 0, the or operation takes the max. } if (edgeTable[iCubeIndex] & 2) { vertlist[1].setX(x + 1.0f); vertlist[1].setY(y + 0.5f); vertlist[1].setZ(z); normlist[1].setX(0.0f); normlist[1].setY(v100 > v110 ? 1.0f : -1.0f); normlist[1].setZ(0.0f); vertMaterials[1] = v100 | v110; } if (edgeTable[iCubeIndex] & 4) { vertlist[2].setX(x + 0.5f); vertlist[2].setY(y + 1.0f); vertlist[2].setZ(z); normlist[2].setX(v010 > v110 ? 1.0f : -1.0f); normlist[2].setY(0.0f); normlist[2].setZ(0.0f); vertMaterials[2] = v010 | v110; } if (edgeTable[iCubeIndex] & 8) { vertlist[3].setX(x); vertlist[3].setY(y + 0.5f); vertlist[3].setZ(z); normlist[3].setX(0.0f); normlist[3].setY(v000 > v010 ? 1.0f : -1.0f); normlist[3].setZ(0.0f); vertMaterials[3] = v000 | v010; } if (edgeTable[iCubeIndex] & 16) { vertlist[4].setX(x + 0.5f); vertlist[4].setY(y); vertlist[4].setZ(z + 1.0f); normlist[4].setX(v001 > v101 ? 1.0f : -1.0f); normlist[4].setY(0.0f); normlist[4].setZ(0.0f); vertMaterials[4] = v001 | v101; } if (edgeTable[iCubeIndex] & 32) { vertlist[5].setX(x + 1.0f); vertlist[5].setY(y + 0.5f); vertlist[5].setZ(z + 1.0f); normlist[5].setX(0.0f); normlist[5].setY(v101 > v111 ? 1.0f : -1.0f); normlist[5].setZ(0.0f); vertMaterials[5] = v101 | v111; } if (edgeTable[iCubeIndex] & 64) { vertlist[6].setX(x + 0.5f); vertlist[6].setY(y + 1.0f); vertlist[6].setZ(z + 1.0f); normlist[6].setX(v011 > v111 ? 1.0f : -1.0f); normlist[6].setY(0.0f); normlist[6].setZ(0.0f); vertMaterials[6] = v011 | v111; } if (edgeTable[iCubeIndex] & 128) { vertlist[7].setX(x); vertlist[7].setY(y + 0.5f); vertlist[7].setZ(z + 1.0f); normlist[7].setX(0.0f); normlist[7].setY(v001 > v011 ? 1.0f : -1.0f); normlist[7].setZ(0.0f); vertMaterials[7] = v001 | v011; } if (edgeTable[iCubeIndex] & 256) { vertlist[8].setX(x); vertlist[8].setY(y); vertlist[8].setZ(z + 0.5f); normlist[8].setX(0.0f); normlist[8].setY(0.0f); normlist[8].setZ(v000 > v001 ? 1.0f : -1.0f); vertMaterials[8] = v000 | v001; } if (edgeTable[iCubeIndex] & 512) { vertlist[9].setX(x + 1.0f); vertlist[9].setY(y); vertlist[9].setZ(z + 0.5f); normlist[9].setX(0.0f); normlist[9].setY(0.0f); normlist[9].setZ(v100 > v101 ? 1.0f : -1.0f); vertMaterials[9] = v100 | v101; } if (edgeTable[iCubeIndex] & 1024) { vertlist[10].setX(x + 1.0f); vertlist[10].setY(y + 1.0f); vertlist[10].setZ(z + 0.5f); normlist[10].setX(0.0f); normlist[10].setY(0.0f); normlist[10].setZ(v110 > v111 ? 1.0f : -1.0f); vertMaterials[10] = v110 | v111; } if (edgeTable[iCubeIndex] & 2048) { vertlist[11].setX(x); vertlist[11].setY(y + 1.0f); vertlist[11].setZ(z + 0.5f); normlist[11].setX(0.0f); normlist[11].setY(0.0f); normlist[11].setZ(v010 > v011 ? 1.0f : -1.0f); vertMaterials[11] = v010 | v011; } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { //The three vertices forming a triangle const Vector3DFloat vertex0 = vertlist[triTable[iCubeIndex][i ]] - offset; const Vector3DFloat vertex1 = vertlist[triTable[iCubeIndex][i+1]] - offset; const Vector3DFloat vertex2 = vertlist[triTable[iCubeIndex][i+2]] - offset; const Vector3DFloat normal0 = normlist[triTable[iCubeIndex][i ]]; const Vector3DFloat normal1 = normlist[triTable[iCubeIndex][i+1]]; const Vector3DFloat normal2 = normlist[triTable[iCubeIndex][i+2]]; //Cast to floats and divide by two. //const Vector3DFloat vertex0AsFloat = (static_cast(vertex0) / 2.0f) - offset; //const Vector3DFloat vertex1AsFloat = (static_cast(vertex1) / 2.0f) - offset; //const Vector3DFloat vertex2AsFloat = (static_cast(vertex2) / 2.0f) - offset; const uint8_t material0 = vertMaterials[triTable[iCubeIndex][i ]]; const uint8_t material1 = vertMaterials[triTable[iCubeIndex][i+1]]; const uint8_t material2 = vertMaterials[triTable[iCubeIndex][i+2]]; //If all the materials are the same, we just need one triangle for that material with all the alphas set high. SurfaceVertex v0(vertex0, normal0, material0 + 0.1f); SurfaceVertex v1(vertex1, normal1, material1 + 0.1f); SurfaceVertex v2(vertex2, normal2, material2 + 0.1f); int32_t index0 = getIndexFor(v0.getPosition(), regionDimensions, vertexIndicesX, vertexIndicesY, vertexIndicesZ); if(index0 == -1) { index0 = singleMaterialPatch->addVertex(v0); setIndexFor(v0.getPosition(), regionDimensions, index0, vertexIndicesX, vertexIndicesY, vertexIndicesZ); } int32_t index1 = getIndexFor(v1.getPosition(), regionDimensions, vertexIndicesX, vertexIndicesY, vertexIndicesZ); if(index1 == -1) { index1 = singleMaterialPatch->addVertex(v1); setIndexFor(v1.getPosition(), regionDimensions, index1, vertexIndicesX, vertexIndicesY, vertexIndicesZ); } int32_t index2 = getIndexFor(v2.getPosition(), regionDimensions, vertexIndicesX, vertexIndicesY, vertexIndicesZ); if(index2 == -1) { index2 = singleMaterialPatch->addVertex(v2); setIndexFor(v2.getPosition(), regionDimensions, index2, vertexIndicesX, vertexIndicesY, vertexIndicesZ); } singleMaterialPatch->addTriangle(index0, index1, index2); }//For each triangle }//For each cell } int32_t getIndexFor(const Vector3DFloat& pos, const Vector3DInt32& regionDimensions, const std::vector& vertexIndicesX, const std::vector& vertexIndicesY, const std::vector& vertexIndicesZ) { float xIntPartAsFloat; float xFracPart = std::modf(pos.getX(), &xIntPartAsFloat); float yIntPartAsFloat; float yFracPart = std::modf(pos.getY(), &yIntPartAsFloat); float zIntPartAsFloat; float zFracPart = std::modf(pos.getZ(), &zIntPartAsFloat); uint16_t xIntPart = static_cast(xIntPartAsFloat); uint16_t yIntPart = static_cast(yIntPartAsFloat); uint16_t zIntPart = static_cast(zIntPartAsFloat); //Of all the fractional parts, two should be zero and one should be 0.5. if(xFracPart > 0.25f) { return vertexIndicesX[xIntPart + yIntPart * regionDimensions.getX() + zIntPart * regionDimensions.getX() * regionDimensions.getY()]; } if(yFracPart > 0.25f) { return vertexIndicesY[xIntPart + yIntPart * regionDimensions.getX() + zIntPart * regionDimensions.getX() * regionDimensions.getY()]; } if(zFracPart > 0.25f) { return vertexIndicesZ[xIntPart + yIntPart * regionDimensions.getX() + zIntPart * regionDimensions.getX() * regionDimensions.getY()]; } } void setIndexFor(const Vector3DFloat& pos, const Vector3DInt32& regionDimensions, int32_t newIndex, std::vector& vertexIndicesX, std::vector& vertexIndicesY, std::vector& vertexIndicesZ) { float xIntPartAsFloat; float xFracPart = std::modf(pos.getX(), &xIntPartAsFloat); float yIntPartAsFloat; float yFracPart = std::modf(pos.getY(), &yIntPartAsFloat); float zIntPartAsFloat; float zFracPart = std::modf(pos.getZ(), &zIntPartAsFloat); uint16_t xIntPart = static_cast(xIntPartAsFloat); uint16_t yIntPart = static_cast(yIntPartAsFloat); uint16_t zIntPart = static_cast(zIntPartAsFloat); //Of all the fractional parts, two should be zero and one should be 0.5. if(xFracPart > 0.25f) { vertexIndicesX[xIntPart + yIntPart * regionDimensions.getX() + zIntPart * regionDimensions.getX() * regionDimensions.getY()] = newIndex; } if(yFracPart > 0.25f) { vertexIndicesY[xIntPart + yIntPart * regionDimensions.getX() + zIntPart * regionDimensions.getX() * regionDimensions.getY()] = newIndex; } if(zFracPart > 0.25f) { vertexIndicesZ[xIntPart + yIntPart * regionDimensions.getX() + zIntPart * regionDimensions.getX() * regionDimensions.getY()] = newIndex; } } }