/******************************************************************************* Copyright (c) 2005-2009 David Williams This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. *******************************************************************************/ #include #include #include #include "vector_melax.h" float sqr(float a) {return a*a;} // vector (floating point) implementation float magnitude(VectorM v) { return (float)sqrt(sqr(v.x) + sqr( v.y)+ sqr(v.z)); } VectorM normalize(VectorM v) { float d=magnitude(v); if (d==0) { printf("Cant normalize ZERO vector\n"); assert(0); d=0.1f; } v.x/=d; v.y/=d; v.z/=d; return v; } VectorM operator+(VectorM v1,VectorM v2) {return VectorM(v1.x+v2.x,v1.y+v2.y,v1.z+v2.z);} VectorM operator-(VectorM v1,VectorM v2) {return VectorM(v1.x-v2.x,v1.y-v2.y,v1.z-v2.z);} VectorM operator-(VectorM v) {return VectorM(-v.x,-v.y,-v.z);} VectorM operator*(VectorM v1,float s) {return VectorM(v1.x*s,v1.y*s,v1.z*s);} VectorM operator*(float s, VectorM v1) {return VectorM(v1.x*s,v1.y*s,v1.z*s);} VectorM operator/(VectorM v1,float s) {return v1*(1.0f/s);} float operator^(VectorM v1,VectorM v2) {return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;} VectorM operator*(VectorM v1,VectorM v2) { return VectorM( v1.y * v2.z - v1.z*v2.y, v1.z * v2.x - v1.x*v2.z, v1.x * v2.y - v1.y*v2.x); } VectorM planelineintersection(VectorM n,float d,VectorM p1,VectorM p2){ // returns the point where the line p1-p2 intersects the plane n&d VectorM dif = p2-p1; float dn= n^dif; float t = -(d+(n^p1) )/dn; return p1 + (dif*t); } int concurrent(VectorM a,VectorM b) { return(a.x==b.x && a.y==b.y && a.z==b.z); } // Matrix Implementation matrix transpose(matrix m) { return matrix( VectorM(m.x.x,m.y.x,m.z.x), VectorM(m.x.y,m.y.y,m.z.y), VectorM(m.x.z,m.y.z,m.z.z)); } VectorM operator*(matrix m,VectorM v){ m=transpose(m); // since column ordered return VectorM(m.x^v,m.y^v,m.z^v); } matrix operator*(matrix m1,matrix m2){ m1=transpose(m1); return matrix(m1*m2.x,m1*m2.y,m1*m2.z); } //Quaternion Implementation Quaternion operator*(Quaternion a,Quaternion b) { Quaternion c; c.r = a.r*b.r - a.x*b.x - a.y*b.y - a.z*b.z; c.x = a.r*b.x + a.x*b.r + a.y*b.z - a.z*b.y; c.y = a.r*b.y - a.x*b.z + a.y*b.r + a.z*b.x; c.z = a.r*b.z + a.x*b.y - a.y*b.x + a.z*b.r; return c; } Quaternion operator-(Quaternion q) { return Quaternion(q.r*-1,q.x,q.y,q.z); } Quaternion operator*(Quaternion a,float b) { return Quaternion(a.r*b, a.x*b, a.y*b, a.z*b); } VectorM operator*(Quaternion q,VectorM v) { return q.getmatrix() * v; } VectorM operator*(VectorM v,Quaternion q){ assert(0); // must multiply with the quat on the left return VectorM(0.0f,0.0f,0.0f); } Quaternion operator+(Quaternion a,Quaternion b) { return Quaternion(a.r+b.r, a.x+b.x, a.y+b.y, a.z+b.z); } float operator^(Quaternion a,Quaternion b) { return (a.r*b.r + a.x*b.x + a.y*b.y + a.z*b.z); } Quaternion slerp(Quaternion a,Quaternion b,float interp){ if((a^b) <0.0) { a.r=-a.r; a.x=-a.x; a.y=-a.y; a.z=-a.z; } float theta = (float)acos(a^b); if(theta==0.0f) { return(a);} return a*(float)(sin(theta-interp*theta)/sin(theta)) + b*(float)(sin(interp*theta)/sin(theta)); }