/******************************************************************************* Copyright (c) 2005-2009 David Williams This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. *******************************************************************************/ #include "SurfaceExtractor.h" #include "IndexedSurfacePatch.h" #include "PolyVoxImpl/MarchingCubesTables.h" #include "SurfaceVertex.h" namespace PolyVox { SurfaceExtractor::SurfaceExtractor(Volume& volData) :m_uLodLevel(0) ,m_volData(volData) ,m_sampVolume(&volData) { } uint8_t SurfaceExtractor::getLodLevel(void) { return m_uLodLevel; } void SurfaceExtractor::setLodLevel(uint8_t uLodLevel) { m_uLodLevel = uLodLevel; //Step size is 2^uLodLevel m_uStepSize = 1 << uLodLevel; } POLYVOX_SHARED_PTR SurfaceExtractor::extractSurfaceForRegion(Region region) { m_regInputUncropped = region; //When generating the mesh for a region we actually look outside it in the // back, bottom, right direction. Protect against access violations by cropping region here m_regVolumeCropped = m_volData.getEnclosingRegion(); m_regInputUncropped.cropTo(m_regVolumeCropped); m_regVolumeCropped.setUpperCorner(m_regVolumeCropped.getUpperCorner() - Vector3DInt16(2*m_uStepSize-1,2*m_uStepSize-1,2*m_uStepSize-1)); m_regInputCropped = region; m_regInputCropped.cropTo(m_regVolumeCropped); m_ispCurrent = new IndexedSurfacePatch(); m_uRegionWidth = m_regInputCropped.width(); m_uRegionHeight = m_regInputCropped.height(); m_uScratchPadWidth = m_uRegionWidth+m_uStepSize+8; m_uScratchPadHeight = m_uRegionHeight+m_uStepSize+8; //For edge indices m_pPreviousVertexIndicesX = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight]; m_pPreviousVertexIndicesY = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight]; m_pPreviousVertexIndicesZ = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight]; m_pCurrentVertexIndicesX = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight]; m_pCurrentVertexIndicesY = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight]; m_pCurrentVertexIndicesZ = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight]; //Cell bitmasks m_pPreviousBitmask = new uint8_t[m_uScratchPadWidth * m_uScratchPadHeight]; m_pCurrentBitmask = new uint8_t[m_uScratchPadWidth * m_uScratchPadHeight]; //Create a region corresponding to the first slice m_regSlicePrevious = m_regInputCropped; Vector3DInt16 v3dUpperCorner = m_regSlicePrevious.getUpperCorner(); v3dUpperCorner.setZ(m_regSlicePrevious.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick. m_regSlicePrevious.setUpperCorner(v3dUpperCorner); m_regSliceCurrent = m_regSlicePrevious; switch(m_uLodLevel) { case 0: extractSurfaceImpl<0>(); break; case 1: extractSurfaceImpl<1>(); break; case 2: extractSurfaceImpl<2>(); break; } delete[] m_pPreviousBitmask; delete[] m_pCurrentBitmask; delete[] m_pPreviousVertexIndicesX; delete[] m_pCurrentVertexIndicesX; delete[] m_pPreviousVertexIndicesY; delete[] m_pCurrentVertexIndicesY; delete[] m_pPreviousVertexIndicesZ; delete[] m_pCurrentVertexIndicesZ; m_ispCurrent->m_Region = m_regInputUncropped; m_ispCurrent->m_vecLodRecords.clear(); LodRecord lodRecord; lodRecord.beginIndex = 0; lodRecord.endIndex = m_ispCurrent->getNoOfIndices(); m_ispCurrent->m_vecLodRecords.push_back(lodRecord); return POLYVOX_SHARED_PTR(m_ispCurrent); } template void SurfaceExtractor::extractSurfaceImpl(void) { uint32_t uNoOfNonEmptyCellsForSlice0 = 0; uint32_t uNoOfNonEmptyCellsForSlice1 = 0; //Process the first slice (previous slice not available) computeBitmaskForSlice(); uNoOfNonEmptyCellsForSlice1 = m_uNoOfOccupiedCells; if(uNoOfNonEmptyCellsForSlice1 != 0) { memset(m_pCurrentVertexIndicesX, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); memset(m_pCurrentVertexIndicesY, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); memset(m_pCurrentVertexIndicesZ, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); generateVerticesForSlice(); } std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1); std::swap(m_pPreviousBitmask, m_pCurrentBitmask); std::swap(m_pPreviousVertexIndicesX, m_pCurrentVertexIndicesX); std::swap(m_pPreviousVertexIndicesY, m_pCurrentVertexIndicesY); std::swap(m_pPreviousVertexIndicesZ, m_pCurrentVertexIndicesZ); m_regSlicePrevious = m_regSliceCurrent; m_regSliceCurrent.shift(Vector3DInt16(0,0,m_uStepSize)); //Process the other slices (previous slice is available) for(uint32_t uSlice = 1; uSlice <= m_regInputCropped.depth(); uSlice += m_uStepSize) { computeBitmaskForSlice(); uNoOfNonEmptyCellsForSlice1 = m_uNoOfOccupiedCells; if(uNoOfNonEmptyCellsForSlice1 != 0) { memset(m_pCurrentVertexIndicesX, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); memset(m_pCurrentVertexIndicesY, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); memset(m_pCurrentVertexIndicesZ, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); generateVerticesForSlice(); } if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0)) { generateIndicesForSlice(); } std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1); std::swap(m_pPreviousBitmask, m_pCurrentBitmask); std::swap(m_pPreviousVertexIndicesX, m_pCurrentVertexIndicesX); std::swap(m_pPreviousVertexIndicesY, m_pCurrentVertexIndicesY); std::swap(m_pPreviousVertexIndicesZ, m_pCurrentVertexIndicesZ); m_regSlicePrevious = m_regSliceCurrent; m_regSliceCurrent.shift(Vector3DInt16(0,0,m_uStepSize)); } //A final slice just to close of the volume m_regSliceCurrent.shift(Vector3DInt16(0,0,-m_uStepSize)); if(m_regSliceCurrent.getLowerCorner().getZ() == m_regVolumeCropped.getUpperCorner().getZ()) { memset(m_pCurrentVertexIndicesX, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); memset(m_pCurrentVertexIndicesY, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); memset(m_pCurrentVertexIndicesZ, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); generateIndicesForSlice(); } } template uint32_t SurfaceExtractor::computeBitmaskForSlice(void) { m_uNoOfOccupiedCells = 0; const uint16_t uMaxXVolSpace = m_regSliceCurrent.getUpperCorner().getX(); const uint16_t uMaxYVolSpace = m_regSliceCurrent.getUpperCorner().getY(); uZVolSpace = m_regSliceCurrent.getLowerCorner().getZ(); uZRegSpace = uZVolSpace - m_regInputCropped.getLowerCorner().getZ(); //Process the lower left corner uYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); uXVolSpace = m_regSliceCurrent.getLowerCorner().getX(); uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX(); uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY(); m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); computeBitmaskForCell(); //Process the edge where x is minimal. uXVolSpace = m_regSliceCurrent.getLowerCorner().getX(); m_sampVolume.setPosition(uXVolSpace, m_regSliceCurrent.getLowerCorner().getY(), uZVolSpace); for(uYVolSpace = m_regSliceCurrent.getLowerCorner().getY() + m_uStepSize; uYVolSpace <= uMaxYVolSpace; uYVolSpace += m_uStepSize) { uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX(); uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY(); if(uLodLevel == 0) { m_sampVolume.movePositiveY(); } else { m_sampVolume.setPosition(uXVolSpace, uYVolSpace, uZVolSpace); } computeBitmaskForCell(); } //Process the edge where y is minimal. uYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); m_sampVolume.setPosition(m_regSliceCurrent.getLowerCorner().getX(), uYVolSpace, uZVolSpace); for(uXVolSpace = m_regSliceCurrent.getLowerCorner().getX() + m_uStepSize; uXVolSpace <= uMaxXVolSpace; uXVolSpace += m_uStepSize) { uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX(); uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY(); if(uLodLevel == 0) { m_sampVolume.movePositiveX(); } else { m_sampVolume.setPosition(uXVolSpace, uYVolSpace, uZVolSpace); } computeBitmaskForCell(); } //Process all remaining elemnents of the slice. In this case, previous x and y values are always available for(uYVolSpace = m_regSliceCurrent.getLowerCorner().getY() + m_uStepSize; uYVolSpace <= uMaxYVolSpace; uYVolSpace += m_uStepSize) { m_sampVolume.setPosition(m_regSliceCurrent.getLowerCorner().getX(), uYVolSpace, uZVolSpace); for(uXVolSpace = m_regSliceCurrent.getLowerCorner().getX() + m_uStepSize; uXVolSpace <= uMaxXVolSpace; uXVolSpace += m_uStepSize) { uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX(); uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY(); if(uLodLevel == 0) { m_sampVolume.movePositiveX(); } else { m_sampVolume.setPosition(uXVolSpace, uYVolSpace, uZVolSpace); } computeBitmaskForCell(); } } return m_uNoOfOccupiedCells; } template void SurfaceExtractor::computeBitmaskForCell(void) { uint8_t iCubeIndex = 0; uint8_t v000 = 0; uint8_t v100 = 0; uint8_t v010 = 0; uint8_t v110 = 0; uint8_t v001 = 0; uint8_t v101 = 0; uint8_t v011 = 0; uint8_t v111 = 0; if(isPrevZAvail) { if(isPrevYAvail) { if(isPrevXAvail) { if(uLodLevel == 0) { v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //z uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)]; iPreviousCubeIndexZ >>= 4; //y uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize)]; iPreviousCubeIndexY &= 192; //192 = 128 + 64 iPreviousCubeIndexY >>= 2; //x uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace)]; iPreviousCubeIndexX &= 128; iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { if(uLodLevel == 0) { v011 = m_sampVolume.peekVoxel0px1py1pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v011 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //z uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)]; iPreviousCubeIndexZ >>= 4; //y uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize)]; iPreviousCubeIndexY &= 192; //192 = 128 + 64 iPreviousCubeIndexY >>= 2; iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } else //previous Y not available { if(isPrevXAvail) { if(uLodLevel == 0) { v101 = m_sampVolume.peekVoxel1px0py1pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize); v101 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //z uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)]; iPreviousCubeIndexZ >>= 4; //x uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace)]; iPreviousCubeIndexX &= 160; //160 = 128+32 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { if(uLodLevel == 0) { v001 = m_sampVolume.peekVoxel0px0py1pz(); v101 = m_sampVolume.peekVoxel1px0py1pz(); v011 = m_sampVolume.peekVoxel0px1py1pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+m_uStepSize); v001 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize); v101 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v011 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //z uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)]; iCubeIndex = iPreviousCubeIndexZ >> 4; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } } else //previous Z not available { if(isPrevYAvail) { if(isPrevXAvail) { if(uLodLevel == 0) { v110 = m_sampVolume.peekVoxel1px1py0pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace); v110 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //y uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize)]; iPreviousCubeIndexY &= 204; //204 = 128+64+8+4 iPreviousCubeIndexY >>= 2; //x uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace)]; iPreviousCubeIndexX &= 170; //170 = 128+32+8+2 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY; if (v110 == 0) iCubeIndex |= 8; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { if(uLodLevel == 0) { v010 = m_sampVolume.peekVoxel0px1py0pz(); v110 = m_sampVolume.peekVoxel1px1py0pz(); v011 = m_sampVolume.peekVoxel0px1py1pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace); v010 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace); v110 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v011 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //y uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize)]; iPreviousCubeIndexY &= 204; //204 = 128+64+8+4 iPreviousCubeIndexY >>= 2; iCubeIndex = iPreviousCubeIndexY; if (v010 == 0) iCubeIndex |= 4; if (v110 == 0) iCubeIndex |= 8; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } else //previous Y not available { if(isPrevXAvail) { if(uLodLevel == 0) { v100 = m_sampVolume.peekVoxel1px0py0pz(); v110 = m_sampVolume.peekVoxel1px1py0pz(); v101 = m_sampVolume.peekVoxel1px0py1pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace); v100 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace); v110 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize); v101 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //x uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace)]; iPreviousCubeIndexX &= 170; //170 = 128+32+8+2 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 8; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { if(uLodLevel == 0) { v000 = m_sampVolume.getVoxel(); v100 = m_sampVolume.peekVoxel1px0py0pz(); v010 = m_sampVolume.peekVoxel0px1py0pz(); v110 = m_sampVolume.peekVoxel1px1py0pz(); v001 = m_sampVolume.peekVoxel0px0py1pz(); v101 = m_sampVolume.peekVoxel1px0py1pz(); v011 = m_sampVolume.peekVoxel0px1py1pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); v000 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace); v100 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace); v010 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace); v110 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+m_uStepSize); v001 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize); v101 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v011 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v010 == 0) iCubeIndex |= 4; if (v110 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } } //Save the bitmask m_pCurrentBitmask[getIndex(uXRegSpace,uYVolSpace- m_regInputCropped.getLowerCorner().getY())] = iCubeIndex; if(edgeTable[iCubeIndex] != 0) { ++m_uNoOfOccupiedCells; } } void SurfaceExtractor::generateVerticesForSlice() { uint16_t uZVolSpace = m_regSliceCurrent.getLowerCorner().getZ(); const uint16_t uZRegSpace = uZVolSpace - m_regInputCropped.getLowerCorner().getZ(); bool isZEdge = ((uZVolSpace == m_regInputCropped.getLowerCorner().getZ()) || (uZVolSpace == m_regInputCropped.getUpperCorner().getZ())); //Iterate over each cell in the region for(uint16_t uYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); uYVolSpace <= m_regSliceCurrent.getUpperCorner().getY(); uYVolSpace += m_uStepSize) { const uint16_t uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY(); bool isYEdge = ((uYVolSpace == m_regInputCropped.getLowerCorner().getY()) || (uYVolSpace == m_regInputCropped.getUpperCorner().getY())); for(uint16_t uXVolSpace = m_regSliceCurrent.getLowerCorner().getX(); uXVolSpace <= m_regSliceCurrent.getUpperCorner().getX(); uXVolSpace += m_uStepSize) { //Current position const uint16_t uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX(); bool isXEdge = ((uXVolSpace == m_regInputCropped.getLowerCorner().getX()) || (uXVolSpace == m_regInputCropped.getUpperCorner().getX())); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace)]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } //Check whether the generated vertex will lie on the edge of the region m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); const uint8_t v000 = m_sampVolume.getSubSampledVoxel(m_uLodLevel); /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { m_sampVolume.setPosition(uXVolSpace + m_uStepSize,uYVolSpace,uZVolSpace); const uint8_t v100 = m_sampVolume.getSubSampledVoxel(m_uLodLevel); const Vector3DFloat v3dPosition(uXVolSpace - m_regInputCropped.getLowerCorner().getX() + 0.5f * m_uStepSize, uYVolSpace - m_regInputCropped.getLowerCorner().getY(), uZVolSpace - m_regInputCropped.getLowerCorner().getZ()); const Vector3DFloat v3dNormal(v000 > v100 ? 1.0f : -1.0f,0.0,0.0); const uint8_t uMaterial = v000 | v100; //Because one of these is 0, the or operation takes the max. SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); //surfaceVertex.setOnGeometryEdge(isXEdge || isYEdge || isZEdge); surfaceVertex.setOnGeometryEdgeX(isXEdge); surfaceVertex.setOnGeometryEdgeY(isYEdge); surfaceVertex.setOnGeometryEdgeZ(isZEdge); uint32_t uLastVertexIndex = m_ispCurrent->addVertex(surfaceVertex); m_pCurrentVertexIndicesX[getIndex(uXVolSpace - m_regInputCropped.getLowerCorner().getX(),uYVolSpace - m_regInputCropped.getLowerCorner().getY())] = uLastVertexIndex; } if (edgeTable[iCubeIndex] & 8) { m_sampVolume.setPosition(uXVolSpace,uYVolSpace + m_uStepSize,uZVolSpace); const uint8_t v010 = m_sampVolume.getSubSampledVoxel(m_uLodLevel); const Vector3DFloat v3dPosition(uXVolSpace - m_regInputCropped.getLowerCorner().getX(), uYVolSpace - m_regInputCropped.getLowerCorner().getY() + 0.5f * m_uStepSize, uZVolSpace - m_regInputCropped.getLowerCorner().getZ()); const Vector3DFloat v3dNormal(0.0,v000 > v010 ? 1.0f : -1.0f,0.0); const uint8_t uMaterial = v000 | v010; //Because one of these is 0, the or operation takes the max. SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); //surfaceVertex.setOnGeometryEdge(isXEdge || isYEdge || isZEdge); surfaceVertex.setOnGeometryEdgeX(isXEdge); surfaceVertex.setOnGeometryEdgeY(isYEdge); surfaceVertex.setOnGeometryEdgeZ(isZEdge); uint32_t uLastVertexIndex = m_ispCurrent->addVertex(surfaceVertex); m_pCurrentVertexIndicesY[getIndex(uXVolSpace - m_regInputCropped.getLowerCorner().getX(),uYVolSpace - m_regInputCropped.getLowerCorner().getY())] = uLastVertexIndex; } if (edgeTable[iCubeIndex] & 256) { m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace + m_uStepSize); const uint8_t v001 = m_sampVolume.getSubSampledVoxel(m_uLodLevel); const Vector3DFloat v3dPosition(uXVolSpace - m_regInputCropped.getLowerCorner().getX(), uYVolSpace - m_regInputCropped.getLowerCorner().getY(), uZVolSpace - m_regInputCropped.getLowerCorner().getZ() + 0.5f * m_uStepSize); const Vector3DFloat v3dNormal(0.0,0.0,v000 > v001 ? 1.0f : -1.0f); const uint8_t uMaterial = v000 | v001; //Because one of these is 0, the or operation takes the max. SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); //surfaceVertex.setOnGeometryEdge(isXEdge || isYEdge || isZEdge); surfaceVertex.setOnGeometryEdgeX(isXEdge); surfaceVertex.setOnGeometryEdgeY(isYEdge); surfaceVertex.setOnGeometryEdgeZ(isZEdge); uint32_t uLastVertexIndex = m_ispCurrent->addVertex(surfaceVertex); m_pCurrentVertexIndicesZ[getIndex(uXVolSpace - m_regInputCropped.getLowerCorner().getX(),uYVolSpace - m_regInputCropped.getLowerCorner().getY())] = uLastVertexIndex; } }//For each cell } } void SurfaceExtractor::generateIndicesForSlice() { int32_t indlist[12]; for(int i = 0; i < 12; i++) { indlist[i] = -1; } for(uint16_t uYVolSpace = m_regSlicePrevious.getLowerCorner().getY(); uYVolSpace < m_regInputUncropped.getUpperCorner().getY(); uYVolSpace += m_uStepSize) { for(uint16_t uXVolSpace = m_regSlicePrevious.getLowerCorner().getX(); uXVolSpace < m_regInputUncropped.getUpperCorner().getX(); uXVolSpace += m_uStepSize) { uint16_t uZVolSpace = m_regSlicePrevious.getLowerCorner().getZ(); m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); //Current position const uint16_t uXRegSpace = m_sampVolume.getPosX() - m_regInputCropped.getLowerCorner().getX(); const uint16_t uYRegSpace = m_sampVolume.getPosY() - m_regInputCropped.getLowerCorner().getY(); const uint16_t uZRegSpace = m_sampVolume.getPosZ() - m_regInputCropped.getLowerCorner().getZ(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { indlist[0] = m_pPreviousVertexIndicesX[getIndex(uXRegSpace,uYRegSpace)]; //assert(indlist[0] != -1); } if (edgeTable[iCubeIndex] & 2) { indlist[1] = m_pPreviousVertexIndicesY[getIndex(uXRegSpace+m_uStepSize,uYRegSpace)]; //assert(indlist[1] != -1); } if (edgeTable[iCubeIndex] & 4) { indlist[2] = m_pPreviousVertexIndicesX[getIndex(uXRegSpace,uYRegSpace+m_uStepSize)]; //assert(indlist[2] != -1); } if (edgeTable[iCubeIndex] & 8) { indlist[3] = m_pPreviousVertexIndicesY[getIndex(uXRegSpace,uYRegSpace)]; //assert(indlist[3] != -1); } if (edgeTable[iCubeIndex] & 16) { indlist[4] = m_pCurrentVertexIndicesX[getIndex(uXRegSpace,uYRegSpace)]; //assert(indlist[4] != -1); } if (edgeTable[iCubeIndex] & 32) { indlist[5] = m_pCurrentVertexIndicesY[getIndex(uXRegSpace+m_uStepSize,uYRegSpace)]; //assert(indlist[5] != -1); } if (edgeTable[iCubeIndex] & 64) { indlist[6] = m_pCurrentVertexIndicesX[getIndex(uXRegSpace,uYRegSpace+m_uStepSize)]; //assert(indlist[6] != -1); } if (edgeTable[iCubeIndex] & 128) { indlist[7] = m_pCurrentVertexIndicesY[getIndex(uXRegSpace,uYRegSpace)]; //assert(indlist[7] != -1); } if (edgeTable[iCubeIndex] & 256) { indlist[8] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace,uYRegSpace)]; //assert(indlist[8] != -1); } if (edgeTable[iCubeIndex] & 512) { indlist[9] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace+m_uStepSize,uYRegSpace)]; //assert(indlist[9] != -1); } if (edgeTable[iCubeIndex] & 1024) { indlist[10] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace+m_uStepSize,uYRegSpace+m_uStepSize)]; //assert(indlist[10] != -1); } if (edgeTable[iCubeIndex] & 2048) { indlist[11] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace,uYRegSpace+m_uStepSize)]; //assert(indlist[11] != -1); } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { int32_t ind0 = indlist[triTable[iCubeIndex][i ]]; int32_t ind1 = indlist[triTable[iCubeIndex][i+1]]; int32_t ind2 = indlist[triTable[iCubeIndex][i+2]]; if((ind0 != -1) && (ind1 != -1) && (ind2 != -1)) { assert(ind0 >= 0); assert(ind1 >= 0); assert(ind2 >= 0); assert(ind0 < 1000000); assert(ind1 < 1000000); assert(ind2 < 1000000); m_ispCurrent->addTriangle(ind0, ind1, ind2); } }//For each triangle }//For each cell } } }