/******************************************************************************* Copyright (c) 2005-2009 David Williams This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. *******************************************************************************/ #include "PolyVoxImpl/Block.h" #include "Log.h" #include "VolumeSampler.h" #include "Region.h" #include "Vector.h" #include #include #include //For memcpy #include #include //For invalid_argument namespace PolyVox { //////////////////////////////////////////////////////////////////////////////// /// Builds a volume of the desired dimensions /// \param uWidth The desired width in voxels. This must be a power of two. /// \param uHeight The desired height in voxels. This must be a power of two. /// \param uDepth The desired depth in voxels. This must be a power of two. /// \param uBlockSideLength The size of the blocks which make up the volume. Small /// blocks are more likely to be homogeneous (so more easily shared) and have better /// cache behaviour. However, there is a memory overhead per block so if they are /// not shared it could actually be less efficient (this will depend on the data). /// The size of the volume may also be a factor when choosing block size. Accept /// the default if you are not sure what to choose here. //////////////////////////////////////////////////////////////////////////////// template Volume::Volume(uint16_t uBlockSideLength) : m_uTimestamper(0) ,m_uMaxUncompressedBlockCacheSize(256) ,m_uMaxBlocksLoaded(4096) ,m_uBlockSideLength(uBlockSideLength) ,m_pUncompressedBorderData(0) ,m_v3dLastAccessedBlockPos((std::numeric_limits::max)(), (std::numeric_limits::max)(), (std::numeric_limits::max)()) //An invalid index { setBlockCacheSize(m_uMaxUncompressedBlockCacheSize); //Create a volume of the right size. resize(uBlockSideLength); } //////////////////////////////////////////////////////////////////////////////// /// Destroys the volume and frees any blocks which are not in use by other volumes. //////////////////////////////////////////////////////////////////////////////// template Volume::~Volume() { typename std::map >::iterator i; for(i = m_pBlocks.begin(); i != m_pBlocks.end(); i = m_pBlocks.begin()) { eraseBlock(i); } } //////////////////////////////////////////////////////////////////////////////// /// \param uXPos the \c x position of the voxel /// \param uYPos the \c y position of the voxel /// \param uZPos the \c z position of the voxel /// \return the voxel value //////////////////////////////////////////////////////////////////////////////// template VoxelType Volume::getVoxelAt(int32_t uXPos, int32_t uYPos, int32_t uZPos) const { const int32_t blockX = uXPos >> m_uBlockSideLengthPower; const int32_t blockY = uYPos >> m_uBlockSideLengthPower; const int32_t blockZ = uZPos >> m_uBlockSideLengthPower; const uint16_t xOffset = uXPos - (blockX << m_uBlockSideLengthPower); const uint16_t yOffset = uYPos - (blockY << m_uBlockSideLengthPower); const uint16_t zOffset = uZPos - (blockZ << m_uBlockSideLengthPower); Block* pUncompressedBlock = getUncompressedBlock(blockX, blockY, blockZ); return pUncompressedBlock->getVoxelAt(xOffset,yOffset,zOffset); } //////////////////////////////////////////////////////////////////////////////// /// \param v3dPos the 3D position of the voxel /// \return the voxel value //////////////////////////////////////////////////////////////////////////////// template VoxelType Volume::getVoxelAt(const Vector3DInt32& v3dPos) const { return getVoxelAt(v3dPos.getX(), v3dPos.getY(), v3dPos.getZ()); } //////////////////////////////////////////////////////////////////////////////// /// Increasing the size of the block cache will increase memory but may improve performance. /// You may want to set this to a large value (e.g. 1024) when you are first loading your /// volume data and then set it to a smaller value (e.g.64) for general processing. /// \param uBlockCacheSize The number of blocks for which uncompressed data can be cached. //////////////////////////////////////////////////////////////////////////////// template void Volume::setBlockCacheSize(uint16_t uBlockCacheSize) { clearBlockCache(); m_uMaxUncompressedBlockCacheSize = uBlockCacheSize; } //////////////////////////////////////////////////////////////////////////////// /// Increasing the number of blocks in memory causes fewer calls to load/unload /// \param uMaxBlocks The number of blocks //////////////////////////////////////////////////////////////////////////////// template void Volume::setMaxBlocksLoaded(uint16_t uMaxBlocks) { if(uMaxBlocks < m_pBlocks.size()) { std::cout << uMaxBlocks << ", " << m_pBlocks.size() << ", " << m_pBlocks.size() - uMaxBlocks << std::endl; // we need to unload some blocks for(int j = 0; j < m_pBlocks.size() - uMaxBlocks; j++) { typename std::map >::iterator i; typename std::map >::iterator itUnloadBlock = m_pBlocks.begin(); for(i = m_pBlocks.begin(); i != m_pBlocks.end(); i++) { if(i->second.m_uTimestamp < itUnloadBlock->second.m_uTimestamp) { itUnloadBlock = i; } } eraseBlock(itUnloadBlock); } } m_uMaxBlocksLoaded = uMaxBlocks; } //////////////////////////////////////////////////////////////////////////////// /// \param uXPos the \c x position of the voxel /// \param uYPos the \c y position of the voxel /// \param uZPos the \c z position of the voxel /// \param tValue the value to which the voxel will be set /// \return whether the requested position is inside the volume //////////////////////////////////////////////////////////////////////////////// template bool Volume::setVoxelAt(int32_t uXPos, int32_t uYPos, int32_t uZPos, VoxelType tValue) { const int32_t blockX = uXPos >> m_uBlockSideLengthPower; const int32_t blockY = uYPos >> m_uBlockSideLengthPower; const int32_t blockZ = uZPos >> m_uBlockSideLengthPower; const uint16_t xOffset = uXPos - (blockX << m_uBlockSideLengthPower); const uint16_t yOffset = uYPos - (blockY << m_uBlockSideLengthPower); const uint16_t zOffset = uZPos - (blockZ << m_uBlockSideLengthPower); Block* pUncompressedBlock = getUncompressedBlock(blockX, blockY, blockZ); pUncompressedBlock->setVoxelAt(xOffset,yOffset,zOffset, tValue); //Return true to indicate that we modified a voxel. return true; } //////////////////////////////////////////////////////////////////////////////// /// \param v3dPos the 3D position of the voxel /// \param tValue the value to which the voxel will be set /// \return whether the requested position is inside the volume //////////////////////////////////////////////////////////////////////////////// template bool Volume::setVoxelAt(const Vector3DInt32& v3dPos, VoxelType tValue) { return setVoxelAt(v3dPos.getX(), v3dPos.getY(), v3dPos.getZ(), tValue); } template void Volume::clearBlockCache(void) { for(uint32_t ct = 0; ct < m_vecUncompressedBlockCache.size(); ct++) { m_pBlocks[m_vecUncompressedBlockCache[ct].v3dBlockIndex].compress(); delete[] m_vecUncompressedBlockCache[ct].data; } m_vecUncompressedBlockCache.clear(); } //////////////////////////////////////////////////////////////////////////////// /// Note: Calling this function will destroy all existing data in the volume. /// \param uBlockSideLength The size of the blocks which make up the volume. Small /// blocks are more likely to be homogeneous (so more easily shared) and have better /// cache behaviour. However, there is a memory overhead per block so if they are /// not shared it could actually be less efficient (this will depend on the data). /// The size of the volume may also be a factor when choosing block size. Accept /// the default if you are not sure what to choose here. //////////////////////////////////////////////////////////////////////////////// template void Volume::resize(uint16_t uBlockSideLength) { //Debug mode validation assert(uBlockSideLength > 0); assert(isPowerOf2(uBlockSideLength)); //Release mode validation if(uBlockSideLength == 0) { throw std::invalid_argument("Block side length cannot be zero."); } if(!isPowerOf2(uBlockSideLength)) { throw std::invalid_argument("Block side length must be a power of two."); } //Clear the previous data m_pBlocks.clear(); m_pUncompressedTimestamps.clear(); m_pUncompressedTimestamps.resize(m_uMaxUncompressedBlockCacheSize, 0); //Compute the block side length m_uBlockSideLength = uBlockSideLength; m_uBlockSideLengthPower = logBase2(m_uBlockSideLength); } template void Volume::eraseBlock(typename std::map >::iterator itBlock) const { Vector3DInt32 v3dPos = itBlock->first; Vector3DInt32 v3dLower(v3dPos.getX() << m_uBlockSideLengthPower, v3dPos.getY() << m_uBlockSideLengthPower, v3dPos.getZ() << m_uBlockSideLengthPower); Vector3DInt32 v3dUpper = v3dLower + Vector3DInt32(m_uBlockSideLength-1, m_uBlockSideLength-1, m_uBlockSideLength-1); Region reg(v3dLower, v3dUpper); if(m_UnloadCallback) { m_UnloadCallback(std::ref(*this), reg); } m_pBlocks.erase(itBlock); } template bool Volume::load_setVoxelAt(int32_t uXPos, int32_t uYPos, int32_t uZPos, VoxelType tValue) const { const int32_t blockX = uXPos >> m_uBlockSideLengthPower; const int32_t blockY = uYPos >> m_uBlockSideLengthPower; const int32_t blockZ = uZPos >> m_uBlockSideLengthPower; assert(blockX == m_v3dLoadBlockPos.getX()); assert(blockY == m_v3dLoadBlockPos.getY()); assert(blockZ == m_v3dLoadBlockPos.getZ()); if(blockX != m_v3dLoadBlockPos.getX() && blockY != m_v3dLoadBlockPos.getY() && blockZ != m_v3dLoadBlockPos.getZ()) { throw(std::invalid_argument("you are not allowed to write to any voxels outside the designated region")); } const uint16_t xOffset = uXPos - (blockX << m_uBlockSideLengthPower); const uint16_t yOffset = uYPos - (blockY << m_uBlockSideLengthPower); const uint16_t zOffset = uZPos - (blockZ << m_uBlockSideLengthPower); Block* pUncompressedBlock = getUncompressedBlock(blockX, blockY, blockZ); pUncompressedBlock->setVoxelAt(xOffset,yOffset,zOffset, tValue); //Return true to indicate that we modified a voxel. return true; } template Block* Volume::getUncompressedBlock(int32_t uBlockX, int32_t uBlockY, int32_t uBlockZ) const { Vector3DInt32 v3dBlockPos(uBlockX, uBlockY, uBlockZ); typename std::map >::iterator itBlock = m_pBlocks.find(v3dBlockPos); // check whether the block is already loaded if(itBlock == m_pBlocks.end()) { // it is not loaded // check wether another block needs to be unloaded before this one can be loaded if(m_pBlocks.size() == m_uMaxBlocksLoaded) { // find the least recently used block typename std::map >::iterator i; typename std::map >::iterator itUnloadBlock = m_pBlocks.begin(); for(i = m_pBlocks.begin(); i != m_pBlocks.end(); i++) { if(i->second.m_uTimestamp < itUnloadBlock->second.m_uTimestamp) { itUnloadBlock = i; } } eraseBlock(itUnloadBlock); } Vector3DInt32 v3dLower(v3dBlockPos.getX() << m_uBlockSideLengthPower, v3dBlockPos.getY() << m_uBlockSideLengthPower, v3dBlockPos.getZ() << m_uBlockSideLengthPower); Vector3DInt32 v3dUpper = v3dLower + Vector3DInt32(m_uBlockSideLength-1, m_uBlockSideLength-1, m_uBlockSideLength-1); Region reg(v3dLower, v3dUpper); // create the new block m_pBlocks[v3dBlockPos] = Block(m_uBlockSideLength); itBlock = m_pBlocks.find(v3dBlockPos); // fill it with data (well currently fill it with nothingness) // "load" will actually call setVoxel, which will in turn call this function again but the block will be found // so this if(itBlock == m_pBlocks.end()) never is entered m_v3dLoadBlockPos = v3dBlockPos; if(m_LoadCallback) { m_LoadCallback(std::ref(*this), reg); } m_v3dLoadBlockPos = Vector3DInt32((std::numeric_limits::max)(), (std::numeric_limits::max)(), (std::numeric_limits::max)()); } //Get the block Block* block = &(itBlock->second); //Check if we have the same block as last time, if so there's no need to even update //the time stamp. If we updated it everytime then that would be every time we touched //a voxel, which would overflow a uint32_t and require us to use a uint64_t instead. if(v3dBlockPos == m_v3dLastAccessedBlockPos) { return block; } m_v3dLastAccessedBlockPos = v3dBlockPos; m_uTimestamper++; block->m_uTimestamp = m_uTimestamper; if(block->m_bIsCompressed == false) { m_pUncompressedTimestamps[block->m_uUncompressedIndex] = m_uTimestamper; return block; } //Currently we find the oldest block by iterating over the whole array. Of course we could store the blocks sorted by //timestamp (set, priority_queue, etc) but then we'll need to move them around as the timestamp changes. Can come back //to this if it proves to be a bottleneck (compraed to the cost of actually doing the compression/decompression). uint32_t uUncompressedBlockIndex = (std::numeric_limits::max)(); assert(m_vecUncompressedBlockCache.size() <= m_uMaxUncompressedBlockCacheSize); if(m_vecUncompressedBlockCache.size() == m_uMaxUncompressedBlockCacheSize) { int32_t leastRecentlyUsedBlockIndex = -1; uint32_t uLeastRecentTimestamp = (std::numeric_limits::max)(); // you said not int64 ;) for(uint32_t ct = 0; ct < m_vecUncompressedBlockCache.size(); ct++) { if(m_pUncompressedTimestamps[ct] < uLeastRecentTimestamp) { uLeastRecentTimestamp = m_pUncompressedTimestamps[ct]; leastRecentlyUsedBlockIndex = ct; } } uUncompressedBlockIndex = leastRecentlyUsedBlockIndex; m_pBlocks[m_vecUncompressedBlockCache[leastRecentlyUsedBlockIndex].v3dBlockIndex].compress(); m_vecUncompressedBlockCache[leastRecentlyUsedBlockIndex].v3dBlockIndex = v3dBlockPos; } else { UncompressedBlock uncompressedBlock; //uncompressedBlock.block = block; uncompressedBlock.v3dBlockIndex = v3dBlockPos; uncompressedBlock.data = new VoxelType[m_uBlockSideLength * m_uBlockSideLength * m_uBlockSideLength]; m_vecUncompressedBlockCache.push_back(uncompressedBlock); uUncompressedBlockIndex = m_vecUncompressedBlockCache.size() - 1; } block->m_uUncompressedIndex = uUncompressedBlockIndex; block->uncompress(m_vecUncompressedBlockCache[uUncompressedBlockIndex].data); return block; } template float Volume::calculateCompressionRatio(void) { float fRawSize = m_pBlocks.size() * m_uBlockSideLength * m_uBlockSideLength* m_uBlockSideLength * sizeof(VoxelType); float fCompressedSize = calculateSizeInBytes(); return fCompressedSize/fRawSize; } template uint32_t Volume::calculateSizeInBytes(void) { uint32_t uSizeInBytes = sizeof(Volume); //Memory used by the blocks typename std::map >::iterator i; for(i = m_pBlocks.begin(); i != m_pBlocks.end(); i++) { i->second.calculateSizeInBytes(); } //Memory used by the block cache. uSizeInBytes += m_vecUncompressedBlockCache.capacity() * sizeof(UncompressedBlock); uSizeInBytes += m_vecUncompressedBlockCache.size() * m_uBlockSideLength * m_uBlockSideLength * m_uBlockSideLength * sizeof(VoxelType); uSizeInBytes += m_pUncompressedTimestamps.capacity() * sizeof(uint32_t); //Memory used by border data. if(m_pUncompressedBorderData) { uSizeInBytes += m_uBlockSideLength * m_uBlockSideLength * m_uBlockSideLength * sizeof(VoxelType); } return uSizeInBytes; } }