#include "SurfaceExtractor.h" #include "IndexedSurfacePatch.h" #include "PolyVoxImpl/MarchingCubesTables.h" #include "SurfaceVertex.h" namespace PolyVox { SurfaceExtractor::SurfaceExtractor(Volume& volData) :m_uLodLevel(0) ,m_volData(volData) ,m_sampVolume(volData) { } uint8_t SurfaceExtractor::getLodLevel(void) { return m_uLodLevel; } void SurfaceExtractor::setLodLevel(uint8_t uLodLevel) { m_uLodLevel = uLodLevel; //Step size is 2^uLodLevel m_uStepSize = 1 << uLodLevel; } POLYVOX_SHARED_PTR SurfaceExtractor::extractSurfaceForRegion(Region region) { m_regInputUncropped = region; //When generating the mesh for a region we actually look outside it in the // back, bottom, right direction. Protect against access violations by cropping region here m_regVolumeCropped = m_volData.getEnclosingRegion(); m_regInputUncropped.cropTo(m_regVolumeCropped); m_regVolumeCropped.setUpperCorner(m_regVolumeCropped.getUpperCorner() - Vector3DInt16(2*m_uStepSize-1,2*m_uStepSize-1,2*m_uStepSize-1)); m_regInputCropped = region; m_regInputCropped.cropTo(m_regVolumeCropped); m_ispCurrent = new IndexedSurfacePatch(); m_uRegionWidth = m_regInputCropped.width(); m_uRegionHeight = m_regInputCropped.height(); m_uScratchPadWidth = m_uRegionWidth+m_uStepSize+8; m_uScratchPadHeight = m_uRegionHeight+m_uStepSize+8; //For edge indices m_pPreviousVertexIndicesX = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight]; m_pPreviousVertexIndicesY = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight]; m_pPreviousVertexIndicesZ = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight]; m_pCurrentVertexIndicesX = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight]; m_pCurrentVertexIndicesY = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight]; m_pCurrentVertexIndicesZ = new int32_t[m_uScratchPadWidth * m_uScratchPadHeight]; //Cell bitmasks m_pPreviousBitmask = new uint8_t[m_uScratchPadWidth * m_uScratchPadHeight]; m_pCurrentBitmask = new uint8_t[m_uScratchPadWidth * m_uScratchPadHeight]; //Create a region corresponding to the first slice m_regSlicePrevious = m_regInputCropped; Vector3DInt16 v3dUpperCorner = m_regSlicePrevious.getUpperCorner(); v3dUpperCorner.setZ(m_regSlicePrevious.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick. m_regSlicePrevious.setUpperCorner(v3dUpperCorner); m_regSliceCurrent = m_regSlicePrevious; switch(m_uLodLevel) { case 0: extractSurfaceImpl<0>(); break; case 1: extractSurfaceImpl<1>(); break; case 2: extractSurfaceImpl<2>(); break; } delete[] m_pPreviousBitmask; delete[] m_pCurrentBitmask; delete[] m_pPreviousVertexIndicesX; delete[] m_pCurrentVertexIndicesX; delete[] m_pPreviousVertexIndicesY; delete[] m_pCurrentVertexIndicesY; delete[] m_pPreviousVertexIndicesZ; delete[] m_pCurrentVertexIndicesZ; m_ispCurrent->m_Region = m_regInputUncropped; return POLYVOX_SHARED_PTR(m_ispCurrent); } template void SurfaceExtractor::extractSurfaceImpl(void) { uint32_t uNoOfNonEmptyCellsForSlice0 = 0; uint32_t uNoOfNonEmptyCellsForSlice1 = 0; //Process the first slice (previous slice not available) computeBitmaskForSlice(); uNoOfNonEmptyCellsForSlice1 = m_uNoOfOccupiedCells; if(uNoOfNonEmptyCellsForSlice1 != 0) { memset(m_pCurrentVertexIndicesX, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); memset(m_pCurrentVertexIndicesY, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); memset(m_pCurrentVertexIndicesZ, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); generateVerticesForSlice(); } std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1); std::swap(m_pPreviousBitmask, m_pCurrentBitmask); std::swap(m_pPreviousVertexIndicesX, m_pCurrentVertexIndicesX); std::swap(m_pPreviousVertexIndicesY, m_pCurrentVertexIndicesY); std::swap(m_pPreviousVertexIndicesZ, m_pCurrentVertexIndicesZ); m_regSlicePrevious = m_regSliceCurrent; m_regSliceCurrent.shift(Vector3DInt16(0,0,m_uStepSize)); //Process the other slices (previous slice is available) for(uint32_t uSlice = 1; uSlice <= m_regInputCropped.depth(); uSlice += m_uStepSize) { computeBitmaskForSlice(); uNoOfNonEmptyCellsForSlice1 = m_uNoOfOccupiedCells; if(uNoOfNonEmptyCellsForSlice1 != 0) { memset(m_pCurrentVertexIndicesX, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); memset(m_pCurrentVertexIndicesY, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); memset(m_pCurrentVertexIndicesZ, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); generateVerticesForSlice(); } if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0)) { generateIndicesForSlice(); } std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1); std::swap(m_pPreviousBitmask, m_pCurrentBitmask); std::swap(m_pPreviousVertexIndicesX, m_pCurrentVertexIndicesX); std::swap(m_pPreviousVertexIndicesY, m_pCurrentVertexIndicesY); std::swap(m_pPreviousVertexIndicesZ, m_pCurrentVertexIndicesZ); m_regSlicePrevious = m_regSliceCurrent; m_regSliceCurrent.shift(Vector3DInt16(0,0,m_uStepSize)); } //A final slice just to close of the volume m_regSliceCurrent.shift(Vector3DInt16(0,0,-m_uStepSize)); if(m_regSliceCurrent.getLowerCorner().getZ() == m_regVolumeCropped.getUpperCorner().getZ()) { memset(m_pCurrentVertexIndicesX, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); memset(m_pCurrentVertexIndicesY, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); memset(m_pCurrentVertexIndicesZ, 0xff, m_uScratchPadWidth * m_uScratchPadHeight * 4); generateIndicesForSlice(); } } template uint32_t SurfaceExtractor::computeBitmaskForSlice(void) { m_uNoOfOccupiedCells = 0; const uint16_t uMaxXVolSpace = m_regSliceCurrent.getUpperCorner().getX(); const uint16_t uMaxYVolSpace = m_regSliceCurrent.getUpperCorner().getY(); uZVolSpace = m_regSliceCurrent.getLowerCorner().getZ(); uZRegSpace = uZVolSpace - m_regInputCropped.getLowerCorner().getZ(); //Process the lower left corner uYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); uXVolSpace = m_regSliceCurrent.getLowerCorner().getX(); uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX(); uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY(); m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); computeBitmaskForCell(); //Process the edge where x is minimal. uXVolSpace = m_regSliceCurrent.getLowerCorner().getX(); for(uYVolSpace = m_regSliceCurrent.getLowerCorner().getY() + m_uStepSize; uYVolSpace <= uMaxYVolSpace; uYVolSpace += m_uStepSize) { uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX(); uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY(); m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); computeBitmaskForCell(); } //Process the edge where y is minimal. uYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); for(uXVolSpace = m_regSliceCurrent.getLowerCorner().getX() + m_uStepSize; uXVolSpace <= uMaxXVolSpace; uXVolSpace += m_uStepSize) { uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX(); uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY(); m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); computeBitmaskForCell(); } //Process all remaining elemnents of the slice. In this case, previous x and y values are always available for(uYVolSpace = m_regSliceCurrent.getLowerCorner().getY() + m_uStepSize; uYVolSpace <= uMaxYVolSpace; uYVolSpace += m_uStepSize) { for(uXVolSpace = m_regSliceCurrent.getLowerCorner().getX() + m_uStepSize; uXVolSpace <= uMaxXVolSpace; uXVolSpace += m_uStepSize) { uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX(); uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY(); m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); computeBitmaskForCell(); } } return m_uNoOfOccupiedCells; } template void SurfaceExtractor::computeBitmaskForCell(void) { uint8_t iCubeIndex = 0; uint8_t v000 = 0; uint8_t v100 = 0; uint8_t v010 = 0; uint8_t v110 = 0; uint8_t v001 = 0; uint8_t v101 = 0; uint8_t v011 = 0; uint8_t v111 = 0; if(isPrevZAvail) { if(isPrevYAvail) { if(isPrevXAvail) { if(uLodLevel == 0) { v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //z uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)]; iPreviousCubeIndexZ >>= 4; //y uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize)]; iPreviousCubeIndexY &= 192; //192 = 128 + 64 iPreviousCubeIndexY >>= 2; //x uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace)]; iPreviousCubeIndexX &= 128; iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { if(uLodLevel == 0) { v011 = m_sampVolume.peekVoxel0px1py1pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v011 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //z uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)]; iPreviousCubeIndexZ >>= 4; //y uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize)]; iPreviousCubeIndexY &= 192; //192 = 128 + 64 iPreviousCubeIndexY >>= 2; iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } else //previous Y not available { if(isPrevXAvail) { if(uLodLevel == 0) { v101 = m_sampVolume.peekVoxel1px0py1pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize); v101 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //z uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)]; iPreviousCubeIndexZ >>= 4; //x uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace)]; iPreviousCubeIndexX &= 160; //160 = 128+32 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { if(uLodLevel == 0) { v001 = m_sampVolume.peekVoxel0px0py1pz(); v101 = m_sampVolume.peekVoxel1px0py1pz(); v011 = m_sampVolume.peekVoxel0px1py1pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+m_uStepSize); v001 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize); v101 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v011 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //z uint8_t iPreviousCubeIndexZ = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)]; iCubeIndex = iPreviousCubeIndexZ >> 4; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } } else //previous Z not available { if(isPrevYAvail) { if(isPrevXAvail) { if(uLodLevel == 0) { v110 = m_sampVolume.peekVoxel1px1py0pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace); v110 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //y uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize)]; iPreviousCubeIndexY &= 204; //204 = 128+64+8+4 iPreviousCubeIndexY >>= 2; //x uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace)]; iPreviousCubeIndexX &= 170; //170 = 128+32+8+2 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY; if (v110 == 0) iCubeIndex |= 8; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { if(uLodLevel == 0) { v010 = m_sampVolume.peekVoxel0px1py0pz(); v110 = m_sampVolume.peekVoxel1px1py0pz(); v011 = m_sampVolume.peekVoxel0px1py1pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace); v010 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace); v110 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v011 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //y uint8_t iPreviousCubeIndexY = m_pCurrentBitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize)]; iPreviousCubeIndexY &= 204; //204 = 128+64+8+4 iPreviousCubeIndexY >>= 2; iCubeIndex = iPreviousCubeIndexY; if (v010 == 0) iCubeIndex |= 4; if (v110 == 0) iCubeIndex |= 8; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } else //previous Y not available { if(isPrevXAvail) { if(uLodLevel == 0) { v100 = m_sampVolume.peekVoxel1px0py0pz(); v110 = m_sampVolume.peekVoxel1px1py0pz(); v101 = m_sampVolume.peekVoxel1px0py1pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace); v100 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace); v110 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize); v101 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } //x uint8_t iPreviousCubeIndexX = m_pCurrentBitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace)]; iPreviousCubeIndexX &= 170; //170 = 128+32+8+2 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 8; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { if(uLodLevel == 0) { v000 = m_sampVolume.getVoxel(); v100 = m_sampVolume.peekVoxel1px0py0pz(); v010 = m_sampVolume.peekVoxel0px1py0pz(); v110 = m_sampVolume.peekVoxel1px1py0pz(); v001 = m_sampVolume.peekVoxel0px0py1pz(); v101 = m_sampVolume.peekVoxel1px0py1pz(); v011 = m_sampVolume.peekVoxel0px1py1pz(); v111 = m_sampVolume.peekVoxel1px1py1pz(); } else { m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); v000 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace); v100 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace); v010 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace); v110 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+m_uStepSize); v001 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize); v101 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v011 = m_sampVolume.getSubSampledVoxel(uLodLevel); m_sampVolume.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); v111 = m_sampVolume.getSubSampledVoxel(uLodLevel); } if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v010 == 0) iCubeIndex |= 4; if (v110 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } } //Save the bitmask m_pCurrentBitmask[getIndex(uXRegSpace,uYVolSpace- m_regInputCropped.getLowerCorner().getY())] = iCubeIndex; if(edgeTable[iCubeIndex] != 0) { ++m_uNoOfOccupiedCells; } } void SurfaceExtractor::generateVerticesForSlice() { //Iterate over each cell in the region for(uint16_t uYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); uYVolSpace <= m_regSliceCurrent.getUpperCorner().getY(); uYVolSpace += m_uStepSize) { for(uint16_t uXVolSpace = m_regSliceCurrent.getLowerCorner().getX(); uXVolSpace <= m_regSliceCurrent.getUpperCorner().getX(); uXVolSpace += m_uStepSize) { uint16_t uZVolSpace = m_regSliceCurrent.getLowerCorner().getZ(); //Current position const uint16_t uXRegSpace = uXVolSpace - m_regInputCropped.getLowerCorner().getX(); const uint16_t uYRegSpace = uYVolSpace - m_regInputCropped.getLowerCorner().getY(); const uint16_t uZRegSpace = uZVolSpace - m_regInputCropped.getLowerCorner().getZ(); //Current position //const uint16_t z = regSlice.getLowerCorner().getZ(); m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); const uint8_t v000 = m_sampVolume.getSubSampledVoxel(m_uLodLevel); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = m_pCurrentBitmask[getIndex(uXVolSpace - m_regInputCropped.getLowerCorner().getX(),uYVolSpace - m_regInputCropped.getLowerCorner().getY())]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { //if(uXVolSpace != m_regSliceCurrent.getUpperCorner().getX()) { m_sampVolume.setPosition(uXVolSpace + m_uStepSize,uYVolSpace,uZVolSpace); const uint8_t v100 = m_sampVolume.getSubSampledVoxel(m_uLodLevel); const Vector3DFloat v3dPosition(uXVolSpace - m_regInputCropped.getLowerCorner().getX() + 0.5f * m_uStepSize, uYVolSpace - m_regInputCropped.getLowerCorner().getY(), uZVolSpace - m_regInputCropped.getLowerCorner().getZ()); const Vector3DFloat v3dNormal(v000 > v100 ? 1.0f : -1.0f,0.0,0.0); const uint8_t uMaterial = v000 | v100; //Because one of these is 0, the or operation takes the max. SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); uint32_t uLastVertexIndex = m_ispCurrent->addVertex(surfaceVertex); m_pCurrentVertexIndicesX[getIndex(uXVolSpace - m_regInputCropped.getLowerCorner().getX(),uYVolSpace - m_regInputCropped.getLowerCorner().getY())] = uLastVertexIndex; } } if (edgeTable[iCubeIndex] & 8) { //if(uYVolSpace != m_regSliceCurrent.getUpperCorner().getY()) { m_sampVolume.setPosition(uXVolSpace,uYVolSpace + m_uStepSize,uZVolSpace); const uint8_t v010 = m_sampVolume.getSubSampledVoxel(m_uLodLevel); const Vector3DFloat v3dPosition(uXVolSpace - m_regInputCropped.getLowerCorner().getX(), uYVolSpace - m_regInputCropped.getLowerCorner().getY() + 0.5f * m_uStepSize, uZVolSpace - m_regInputCropped.getLowerCorner().getZ()); const Vector3DFloat v3dNormal(0.0,v000 > v010 ? 1.0f : -1.0f,0.0); const uint8_t uMaterial = v000 | v010; //Because one of these is 0, the or operation takes the max. SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); uint32_t uLastVertexIndex = m_ispCurrent->addVertex(surfaceVertex); m_pCurrentVertexIndicesY[getIndex(uXVolSpace - m_regInputCropped.getLowerCorner().getX(),uYVolSpace - m_regInputCropped.getLowerCorner().getY())] = uLastVertexIndex; } } if (edgeTable[iCubeIndex] & 256) { //if(z != regSlice.getUpperCorner.getZ()) { m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace + m_uStepSize); const uint8_t v001 = m_sampVolume.getSubSampledVoxel(m_uLodLevel); const Vector3DFloat v3dPosition(uXVolSpace - m_regInputCropped.getLowerCorner().getX(), uYVolSpace - m_regInputCropped.getLowerCorner().getY(), uZVolSpace - m_regInputCropped.getLowerCorner().getZ() + 0.5f * m_uStepSize); const Vector3DFloat v3dNormal(0.0,0.0,v000 > v001 ? 1.0f : -1.0f); const uint8_t uMaterial = v000 | v001; //Because one of these is 0, the or operation takes the max. const SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); uint32_t uLastVertexIndex = m_ispCurrent->addVertex(surfaceVertex); m_pCurrentVertexIndicesZ[getIndex(uXVolSpace - m_regInputCropped.getLowerCorner().getX(),uYVolSpace - m_regInputCropped.getLowerCorner().getY())] = uLastVertexIndex; } } }//For each cell } } void SurfaceExtractor::generateIndicesForSlice() { int32_t indlist[12]; for(int i = 0; i < 12; i++) { indlist[i] = -1; } for(uint16_t uYVolSpace = m_regSlicePrevious.getLowerCorner().getY(); uYVolSpace < m_regInputUncropped.getUpperCorner().getY(); uYVolSpace += m_uStepSize) { for(uint16_t uXVolSpace = m_regSlicePrevious.getLowerCorner().getX(); uXVolSpace < m_regInputUncropped.getUpperCorner().getX(); uXVolSpace += m_uStepSize) { uint16_t uZVolSpace = m_regSlicePrevious.getLowerCorner().getZ(); m_sampVolume.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); //Current position const uint16_t uXRegSpace = m_sampVolume.getPosX() - m_regInputCropped.getLowerCorner().getX(); const uint16_t uYRegSpace = m_sampVolume.getPosY() - m_regInputCropped.getLowerCorner().getY(); const uint16_t uZRegSpace = m_sampVolume.getPosZ() - m_regInputCropped.getLowerCorner().getZ(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = m_pPreviousBitmask[getIndex(uXRegSpace,uYRegSpace)]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { indlist[0] = m_pPreviousVertexIndicesX[getIndex(uXRegSpace,uYRegSpace)]; //assert(indlist[0] != -1); } if (edgeTable[iCubeIndex] & 2) { indlist[1] = m_pPreviousVertexIndicesY[getIndex(uXRegSpace+m_uStepSize,uYRegSpace)]; //assert(indlist[1] != -1); } if (edgeTable[iCubeIndex] & 4) { indlist[2] = m_pPreviousVertexIndicesX[getIndex(uXRegSpace,uYRegSpace+m_uStepSize)]; //assert(indlist[2] != -1); } if (edgeTable[iCubeIndex] & 8) { indlist[3] = m_pPreviousVertexIndicesY[getIndex(uXRegSpace,uYRegSpace)]; //assert(indlist[3] != -1); } if (edgeTable[iCubeIndex] & 16) { indlist[4] = m_pCurrentVertexIndicesX[getIndex(uXRegSpace,uYRegSpace)]; //assert(indlist[4] != -1); } if (edgeTable[iCubeIndex] & 32) { indlist[5] = m_pCurrentVertexIndicesY[getIndex(uXRegSpace+m_uStepSize,uYRegSpace)]; //assert(indlist[5] != -1); } if (edgeTable[iCubeIndex] & 64) { indlist[6] = m_pCurrentVertexIndicesX[getIndex(uXRegSpace,uYRegSpace+m_uStepSize)]; //assert(indlist[6] != -1); } if (edgeTable[iCubeIndex] & 128) { indlist[7] = m_pCurrentVertexIndicesY[getIndex(uXRegSpace,uYRegSpace)]; //assert(indlist[7] != -1); } if (edgeTable[iCubeIndex] & 256) { indlist[8] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace,uYRegSpace)]; //assert(indlist[8] != -1); } if (edgeTable[iCubeIndex] & 512) { indlist[9] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace+m_uStepSize,uYRegSpace)]; //assert(indlist[9] != -1); } if (edgeTable[iCubeIndex] & 1024) { indlist[10] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace+m_uStepSize,uYRegSpace+m_uStepSize)]; //assert(indlist[10] != -1); } if (edgeTable[iCubeIndex] & 2048) { indlist[11] = m_pPreviousVertexIndicesZ[getIndex(uXRegSpace,uYRegSpace+m_uStepSize)]; //assert(indlist[11] != -1); } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { int32_t ind0 = indlist[triTable[iCubeIndex][i ]]; int32_t ind1 = indlist[triTable[iCubeIndex][i+1]]; int32_t ind2 = indlist[triTable[iCubeIndex][i+2]]; if((ind0 != -1) && (ind1 != -1) && (ind2 != -1)) { assert(ind0 >= 0); assert(ind1 >= 0); assert(ind2 >= 0); assert(ind0 < 1000000); assert(ind1 < 1000000); assert(ind2 < 1000000); m_ispCurrent->addTriangle(ind0, ind1, ind2); } }//For each triangle }//For each cell } } }