#include "SurfaceExtractors.h" #include "BlockVolume.h" #include "GradientEstimators.h" #include "IndexedSurfacePatch.h" #include "MarchingCubesTables.h" #include "Region.h" #include "RegionGeometry.h" #include "VolumeChangeTracker.h" #include "BlockVolumeIterator.h" #include using namespace boost; namespace PolyVox { std::list getChangedRegionGeometry(VolumeChangeTracker& volume) { std::list listChangedRegions; volume.getChangedRegions(listChangedRegions); std::list listChangedRegionGeometry; for(std::list::const_iterator iterChangedRegions = listChangedRegions.begin(); iterChangedRegions != listChangedRegions.end(); ++iterChangedRegions) { //Generate the surface RegionGeometry regionGeometry; regionGeometry.m_patchSingleMaterial = new IndexedSurfacePatch(false); regionGeometry.m_v3dRegionPosition = iterChangedRegions->getLowerCorner(); generateRoughMeshDataForRegion(volume.getVolumeData(), *iterChangedRegions, regionGeometry.m_patchSingleMaterial); //genMultiFromSingle(regionGeometry.m_patchSingleMaterial, regionGeometry.m_patchMultiMaterial); regionGeometry.m_bContainsSingleMaterialPatch = regionGeometry.m_patchSingleMaterial->getVertices().size() > 0; regionGeometry.m_bIsEmpty = (regionGeometry.m_patchSingleMaterial->getVertices().size() == 0) || (regionGeometry.m_patchSingleMaterial->getIndices().size() == 0); listChangedRegionGeometry.push_back(regionGeometry); } return listChangedRegionGeometry; } boost::uint32_t getIndex(boost::uint32_t x, boost::uint32_t y) { return x + (y * (POLYVOX_REGION_SIDE_LENGTH+1)); } void generateRoughMeshDataForRegion(BlockVolume* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch) { singleMaterialPatch->m_vecVertices.clear(); singleMaterialPatch->m_vecTriangleIndices.clear(); //For edge indices boost::int32_t* vertexIndicesX0 = new boost::int32_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; boost::int32_t* vertexIndicesY0 = new boost::int32_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; boost::int32_t* vertexIndicesZ0 = new boost::int32_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; boost::int32_t* vertexIndicesX1 = new boost::int32_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; boost::int32_t* vertexIndicesY1 = new boost::int32_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; boost::int32_t* vertexIndicesZ1 = new boost::int32_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; //Cell bitmasks boost::uint8_t* bitmask0 = new boost::uint8_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; boost::uint8_t* bitmask1 = new boost::uint8_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; //When generating the mesh for a region we actually look one voxel outside it in the // back, bottom, right direction. Protect against access violations by cropping region here Region regVolume = volumeData->getEnclosingRegion(); regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(1,1,1)); region.cropTo(regVolume); //Offset from volume corner const Vector3DFloat offset = static_cast(region.getLowerCorner()); //Temporary space use to store the vertices Vector3DFloat vertlist[12]; uint8_t vertMaterials[12]; //Create a region corresponding to the first slice Region regSlice0(region); regSlice0.setUpperCorner(Vector3DInt32(regSlice0.getUpperCorner().getX(),regSlice0.getUpperCorner().getY(),regSlice0.getLowerCorner().getZ())); //Iterator to access the volume data BlockVolumeIterator volIter(*volumeData); //Compute bitmask for initial slice boost::uint32_t uNoOfNonEmptyCellsForSlice0 = computeInitialRoughBitmaskForSlice(volIter, regSlice0, offset, bitmask0); if(uNoOfNonEmptyCellsForSlice0 != 0) { //If there were some non-empty cells then generate initial slice vertices for them generateRoughVerticesForSlice(volIter,regSlice0, offset, bitmask0, singleMaterialPatch, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0, /*regTwoSlice.getUpperCorner(),*/ vertlist, vertMaterials); } for(boost::uint32_t uSlice = 0; ((uSlice <= POLYVOX_REGION_SIDE_LENGTH-1) && (uSlice + offset.getZ() < region.getUpperCorner().getZ())); ++uSlice) { Region regSlice1(regSlice0); regSlice1.shift(Vector3DInt32(0,0,1)); boost::uint32_t uNoOfNonEmptyCellsForSlice1 = computeRoughBitmaskForSliceFromPrevious(volIter, regSlice1, offset, bitmask1, bitmask0); if(uNoOfNonEmptyCellsForSlice1 != 0) { generateRoughVerticesForSlice(volIter,regSlice1, offset, bitmask1, singleMaterialPatch, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1, vertlist, vertMaterials); } if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0)) { generateRoughIndicesForSlice(volIter, regSlice0, singleMaterialPatch, offset, bitmask0, bitmask1, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1); } std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1); std::swap(bitmask0, bitmask1); std::swap(vertexIndicesX0, vertexIndicesX1); std::swap(vertexIndicesY0, vertexIndicesY1); std::swap(vertexIndicesZ0, vertexIndicesZ1); regSlice0 = regSlice1; } delete[] bitmask0; delete[] bitmask1; delete[] vertexIndicesX0; delete[] vertexIndicesX1; delete[] vertexIndicesY0; delete[] vertexIndicesY1; delete[] vertexIndicesZ0; delete[] vertexIndicesZ1; std::vector::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != singleMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeNormal(volumeData, static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; } } boost::uint32_t computeInitialRoughBitmaskForSlice(BlockVolumeIterator& volIter, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask) { boost::uint32_t uNoOfNonEmptyCells = 0; //Iterate over each cell in the region volIter.setPosition(regSlice.getLowerCorner().getX(),regSlice.getLowerCorner().getY(), regSlice.getLowerCorner().getZ()); volIter.setValidRegion(regSlice); do { //Current position const uint16_t x = volIter.getPosX() - offset.getX(); const uint16_t y = volIter.getPosY() - offset.getY(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if((x==0) && (y==0)) { const uint8_t v000 = volIter.getVoxel(); const uint8_t v100 = volIter.peekVoxel1px0py0pz(); const uint8_t v010 = volIter.peekVoxel0px1py0pz(); const uint8_t v110 = volIter.peekVoxel1px1py0pz(); const uint8_t v001 = volIter.peekVoxel0px0py1pz(); const uint8_t v101 = volIter.peekVoxel1px0py1pz(); const uint8_t v011 = volIter.peekVoxel0px1py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else if((x>0) && y==0) { const uint8_t v100 = volIter.peekVoxel1px0py0pz(); const uint8_t v110 = volIter.peekVoxel1px1py0pz(); const uint8_t v101 = volIter.peekVoxel1px0py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //x uint8_t iPreviousCubeIndexX = bitmask[getIndex(x-1,y)]; uint8_t srcBit6 = iPreviousCubeIndexX & 64; uint8_t destBit7 = srcBit6 << 1; uint8_t srcBit5 = iPreviousCubeIndexX & 32; uint8_t destBit4 = srcBit5 >> 1; uint8_t srcBit2 = iPreviousCubeIndexX & 4; uint8_t destBit3 = srcBit2 << 1; uint8_t srcBit1 = iPreviousCubeIndexX & 2; uint8_t destBit0 = srcBit1 >> 1; iCubeIndex |= destBit0; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; iCubeIndex |= destBit3; iCubeIndex |= destBit4; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } else if((x==0) && (y>0)) { const uint8_t v010 = volIter.peekVoxel0px1py0pz(); const uint8_t v110 = volIter.peekVoxel1px1py0pz(); const uint8_t v011 = volIter.peekVoxel0px1py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //y uint8_t iPreviousCubeIndexY = bitmask[getIndex(x,y-1)]; uint8_t srcBit7 = iPreviousCubeIndexY & 128; uint8_t destBit4 = srcBit7 >> 3; uint8_t srcBit6 = iPreviousCubeIndexY & 64; uint8_t destBit5 = srcBit6 >> 1; uint8_t srcBit3 = iPreviousCubeIndexY & 8; uint8_t destBit0 = srcBit3 >> 3; uint8_t srcBit2 = iPreviousCubeIndexY & 4; uint8_t destBit1 = srcBit2 >> 1; iCubeIndex |= destBit0; iCubeIndex |= destBit1; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else { const uint8_t v110 = volIter.peekVoxel1px1py0pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //y uint8_t iPreviousCubeIndexY = bitmask[getIndex(x,y-1)]; uint8_t srcBit7 = iPreviousCubeIndexY & 128; uint8_t destBit4 = srcBit7 >> 3; uint8_t srcBit6 = iPreviousCubeIndexY & 64; uint8_t destBit5 = srcBit6 >> 1; uint8_t srcBit3 = iPreviousCubeIndexY & 8; uint8_t destBit0 = srcBit3 >> 3; uint8_t srcBit2 = iPreviousCubeIndexY & 4; uint8_t destBit1 = srcBit2 >> 1; //x uint8_t iPreviousCubeIndexX = bitmask[getIndex(x-1,y)]; srcBit6 = iPreviousCubeIndexX & 64; uint8_t destBit7 = srcBit6 << 1; srcBit2 = iPreviousCubeIndexX & 4; uint8_t destBit3 = srcBit2 << 1; iCubeIndex |= destBit0; iCubeIndex |= destBit1; if (v110 == 0) iCubeIndex |= 4; iCubeIndex |= destBit3; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } //Save the bitmask bitmask[getIndex(x,y)] = iCubeIndex; if(edgeTable[iCubeIndex] != 0) { ++uNoOfNonEmptyCells; } }while(volIter.moveForwardInRegionXYZ());//For each cell return uNoOfNonEmptyCells; } boost::uint32_t computeRoughBitmaskForSliceFromPrevious(BlockVolumeIterator& volIter, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, uint8_t* previousBitmask) { boost::uint32_t uNoOfNonEmptyCells = 0; //Iterate over each cell in the region volIter.setPosition(regSlice.getLowerCorner().getX(),regSlice.getLowerCorner().getY(), regSlice.getLowerCorner().getZ()); volIter.setValidRegion(regSlice); do { //Current position const uint16_t x = volIter.getPosX() - offset.getX(); const uint16_t y = volIter.getPosY() - offset.getY(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if((x==0) && (y==0)) { const uint8_t v001 = volIter.peekVoxel0px0py1pz(); const uint8_t v101 = volIter.peekVoxel1px0py1pz(); const uint8_t v011 = volIter.peekVoxel0px1py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(x,y)]; iCubeIndex = iPreviousCubeIndexZ >> 4; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else if((x>0) && y==0) { const uint8_t v101 = volIter.peekVoxel1px0py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(x,y)]; iCubeIndex = iPreviousCubeIndexZ >> 4; //x uint8_t iPreviousCubeIndexX = bitmask[getIndex(x-1,y)]; uint8_t srcBit6 = iPreviousCubeIndexX & 64; uint8_t destBit7 = srcBit6 << 1; uint8_t srcBit5 = iPreviousCubeIndexX & 32; uint8_t destBit4 = srcBit5 >> 1; iCubeIndex |= destBit4; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } else if((x==0) && (y>0)) { const uint8_t v011 = volIter.peekVoxel0px1py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(x,y)]; iCubeIndex = iPreviousCubeIndexZ >> 4; //y uint8_t iPreviousCubeIndexY = bitmask[getIndex(x,y-1)]; uint8_t srcBit7 = iPreviousCubeIndexY & 128; uint8_t destBit4 = srcBit7 >> 3; uint8_t srcBit6 = iPreviousCubeIndexY & 64; uint8_t destBit5 = srcBit6 >> 1; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else { const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(x,y)]; iCubeIndex = iPreviousCubeIndexZ >> 4; //y uint8_t iPreviousCubeIndexY = bitmask[getIndex(x,y-1)]; uint8_t srcBit7 = iPreviousCubeIndexY & 128; uint8_t destBit4 = srcBit7 >> 3; uint8_t srcBit6 = iPreviousCubeIndexY & 64; uint8_t destBit5 = srcBit6 >> 1; //x uint8_t iPreviousCubeIndexX = bitmask[getIndex(x-1,y)]; srcBit6 = iPreviousCubeIndexX & 64; uint8_t destBit7 = srcBit6 << 1; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } //Save the bitmask bitmask[getIndex(x,y)] = iCubeIndex; if(edgeTable[iCubeIndex] != 0) { ++uNoOfNonEmptyCells; } }while(volIter.moveForwardInRegionXYZ());//For each cell return uNoOfNonEmptyCells; } void generateRoughVerticesForSlice(BlockVolumeIterator& volIter, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,boost::int32_t vertexIndicesX[],boost::int32_t vertexIndicesY[],boost::int32_t vertexIndicesZ[], Vector3DFloat vertlist[], uint8_t vertMaterials[]) { //Iterate over each cell in the region volIter.setPosition(regSlice.getLowerCorner().getX(),regSlice.getLowerCorner().getY(), regSlice.getLowerCorner().getZ()); volIter.setValidRegion(regSlice); //while(volIter.moveForwardInRegionXYZ()) do { //Current position const uint16_t x = volIter.getPosX() - offset.getX(); const uint16_t y = volIter.getPosY() - offset.getY(); const uint16_t z = volIter.getPosZ() - offset.getZ(); const uint8_t v000 = volIter.getVoxel(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = bitmask[getIndex(x,y)]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { if((x + offset.getX()) != regSlice.getUpperCorner().getX()) { vertlist[0].setX(x + 0.5f); vertlist[0].setY(y); vertlist[0].setZ(z); vertMaterials[0] = v000 | volIter.peekVoxel1px0py0pz(); //Because one of these is 0, the or operation takes the max. SurfaceVertex surfaceVertex(vertlist[0],vertMaterials[0], 1.0); singleMaterialPatch->m_vecVertices.push_back(surfaceVertex); vertexIndicesX[getIndex(x,y)] = singleMaterialPatch->m_vecVertices.size()-1; } } if (edgeTable[iCubeIndex] & 8) { if((y + offset.getY()) != regSlice.getUpperCorner().getY()) { vertlist[3].setX(x); vertlist[3].setY(y + 0.5f); vertlist[3].setZ(z); vertMaterials[3] = v000 | volIter.peekVoxel0px1py0pz(); SurfaceVertex surfaceVertex(vertlist[3],vertMaterials[3], 1.0); singleMaterialPatch->m_vecVertices.push_back(surfaceVertex); vertexIndicesY[getIndex(x,y)] = singleMaterialPatch->m_vecVertices.size()-1; } } if (edgeTable[iCubeIndex] & 256) { //if((z + offset.getZ()) != upperCorner.getZ()) { vertlist[8].setX(x); vertlist[8].setY(y); vertlist[8].setZ(z + 0.5f); vertMaterials[8] = v000 | volIter.peekVoxel0px0py1pz(); SurfaceVertex surfaceVertex(vertlist[8],vertMaterials[8], 1.0); singleMaterialPatch->m_vecVertices.push_back(surfaceVertex); vertexIndicesZ[getIndex(x,y)] = singleMaterialPatch->m_vecVertices.size()-1; } } }while(volIter.moveForwardInRegionXYZ());//For each cell } void generateRoughIndicesForSlice(BlockVolumeIterator& volIter, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8_t* bitmask0, uint8_t* bitmask1, boost::int32_t vertexIndicesX0[],boost::int32_t vertexIndicesY0[],boost::int32_t vertexIndicesZ0[], boost::int32_t vertexIndicesX1[],boost::int32_t vertexIndicesY1[],boost::int32_t vertexIndicesZ1[]) { boost::uint32_t indlist[12]; Region regCroppedSlice(regSlice); regCroppedSlice.setUpperCorner(regCroppedSlice.getUpperCorner() - Vector3DInt32(1,1,0)); volIter.setPosition(regCroppedSlice.getLowerCorner().getX(),regCroppedSlice.getLowerCorner().getY(), regCroppedSlice.getLowerCorner().getZ()); volIter.setValidRegion(regCroppedSlice); do { //Current position const uint16_t x = volIter.getPosX() - offset.getX(); const uint16_t y = volIter.getPosY() - offset.getY(); const uint16_t z = volIter.getPosZ() - offset.getZ(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = bitmask0[getIndex(x,y)]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { indlist[0] = vertexIndicesX0[getIndex(x,y)]; assert(indlist[0] != -1); } if (edgeTable[iCubeIndex] & 2) { indlist[1] = vertexIndicesY0[getIndex(x+1,y)]; assert(indlist[1] != -1); } if (edgeTable[iCubeIndex] & 4) { indlist[2] = vertexIndicesX0[getIndex(x,y+1)]; assert(indlist[2] != -1); } if (edgeTable[iCubeIndex] & 8) { indlist[3] = vertexIndicesY0[getIndex(x,y)]; assert(indlist[3] != -1); } if (edgeTable[iCubeIndex] & 16) { indlist[4] = vertexIndicesX1[getIndex(x,y)]; assert(indlist[4] != -1); } if (edgeTable[iCubeIndex] & 32) { indlist[5] = vertexIndicesY1[getIndex(x+1,y)]; assert(indlist[5] != -1); } if (edgeTable[iCubeIndex] & 64) { indlist[6] = vertexIndicesX1[getIndex(x,y+1)]; assert(indlist[6] != -1); } if (edgeTable[iCubeIndex] & 128) { indlist[7] = vertexIndicesY1[getIndex(x,y)]; assert(indlist[7] != -1); } if (edgeTable[iCubeIndex] & 256) { indlist[8] = vertexIndicesZ0[getIndex(x,y)]; assert(indlist[8] != -1); } if (edgeTable[iCubeIndex] & 512) { indlist[9] = vertexIndicesZ0[getIndex(x+1,y)]; assert(indlist[9] != -1); } if (edgeTable[iCubeIndex] & 1024) { indlist[10] = vertexIndicesZ0[getIndex(x+1,y+1)]; assert(indlist[10] != -1); } if (edgeTable[iCubeIndex] & 2048) { indlist[11] = vertexIndicesZ0[getIndex(x,y+1)]; assert(indlist[11] != -1); } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { boost::uint32_t ind0 = indlist[triTable[iCubeIndex][i ]]; boost::uint32_t ind1 = indlist[triTable[iCubeIndex][i+1]]; boost::uint32_t ind2 = indlist[triTable[iCubeIndex][i+2]]; singleMaterialPatch->m_vecTriangleIndices.push_back(ind0); singleMaterialPatch->m_vecTriangleIndices.push_back(ind1); singleMaterialPatch->m_vecTriangleIndices.push_back(ind2); }//For each triangle }while(volIter.moveForwardInRegionXYZ());//For each cell } void generateReferenceMeshDataForRegion(BlockVolume* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch) { //When generating the mesh for a region we actually look one voxel outside it in the // back, bottom, right direction. Protect against access violations by cropping region here Region regVolume = volumeData->getEnclosingRegion(); //regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(1,1,1)); region.cropTo(regVolume); region.setUpperCorner(region.getUpperCorner() - Vector3DInt32(1,1,1)); //Offset from lower block corner const Vector3DFloat offset = static_cast(region.getLowerCorner()); Vector3DFloat vertlist[12]; uint8_t vertMaterials[12]; BlockVolumeIterator volIter(*volumeData); volIter.setValidRegion(region); ////////////////////////////////////////////////////////////////////////// //Get mesh data ////////////////////////////////////////////////////////////////////////// //Iterate over each cell in the region volIter.setPosition(region.getLowerCorner().getX(),region.getLowerCorner().getY(), region.getLowerCorner().getZ()); while(volIter.moveForwardInRegionXYZ()) { //Current position const uint16_t x = volIter.getPosX(); const uint16_t y = volIter.getPosY(); const uint16_t z = volIter.getPosZ(); //Voxels values const uint8_t v000 = volIter.getVoxel(); const uint8_t v100 = volIter.peekVoxel1px0py0pz(); const uint8_t v010 = volIter.peekVoxel0px1py0pz(); const uint8_t v110 = volIter.peekVoxel1px1py0pz(); const uint8_t v001 = volIter.peekVoxel0px0py1pz(); const uint8_t v101 = volIter.peekVoxel1px0py1pz(); const uint8_t v011 = volIter.peekVoxel0px1py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { vertlist[0].setX(x + 0.5f); vertlist[0].setY(y); vertlist[0].setZ(z); vertMaterials[0] = v000 | v100; //Because one of these is 0, the or operation takes the max. } if (edgeTable[iCubeIndex] & 2) { vertlist[1].setX(x + 1.0f); vertlist[1].setY(y + 0.5f); vertlist[1].setZ(z); vertMaterials[1] = v100 | v110; } if (edgeTable[iCubeIndex] & 4) { vertlist[2].setX(x + 0.5f); vertlist[2].setY(y + 1.0f); vertlist[2].setZ(z); vertMaterials[2] = v010 | v110; } if (edgeTable[iCubeIndex] & 8) { vertlist[3].setX(x); vertlist[3].setY(y + 0.5f); vertlist[3].setZ(z); vertMaterials[3] = v000 | v010; } if (edgeTable[iCubeIndex] & 16) { vertlist[4].setX(x + 0.5f); vertlist[4].setY(y); vertlist[4].setZ(z + 1.0f); vertMaterials[4] = v001 | v101; } if (edgeTable[iCubeIndex] & 32) { vertlist[5].setX(x + 1.0f); vertlist[5].setY(y + 0.5f); vertlist[5].setZ(z + 1.0f); vertMaterials[5] = v101 | v111; } if (edgeTable[iCubeIndex] & 64) { vertlist[6].setX(x + 0.5f); vertlist[6].setY(y + 1.0f); vertlist[6].setZ(z + 1.0f); vertMaterials[6] = v011 | v111; } if (edgeTable[iCubeIndex] & 128) { vertlist[7].setX(x); vertlist[7].setY(y + 0.5f); vertlist[7].setZ(z + 1.0f); vertMaterials[7] = v001 | v011; } if (edgeTable[iCubeIndex] & 256) { vertlist[8].setX(x); vertlist[8].setY(y); vertlist[8].setZ(z + 0.5f); vertMaterials[8] = v000 | v001; } if (edgeTable[iCubeIndex] & 512) { vertlist[9].setX(x + 1.0f); vertlist[9].setY(y); vertlist[9].setZ(z + 0.5f); vertMaterials[9] = v100 | v101; } if (edgeTable[iCubeIndex] & 1024) { vertlist[10].setX(x + 1.0f); vertlist[10].setY(y + 1.0f); vertlist[10].setZ(z + 0.5f); vertMaterials[10] = v110 | v111; } if (edgeTable[iCubeIndex] & 2048) { vertlist[11].setX(x); vertlist[11].setY(y + 1.0f); vertlist[11].setZ(z + 0.5f); vertMaterials[11] = v010 | v011; } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { //The three vertices forming a triangle const Vector3DFloat vertex0 = vertlist[triTable[iCubeIndex][i ]] - offset; const Vector3DFloat vertex1 = vertlist[triTable[iCubeIndex][i+1]] - offset; const Vector3DFloat vertex2 = vertlist[triTable[iCubeIndex][i+2]] - offset; //Cast to floats and divide by two. //const Vector3DFloat vertex0AsFloat = (static_cast(vertex0) / 2.0f) - offset; //const Vector3DFloat vertex1AsFloat = (static_cast(vertex1) / 2.0f) - offset; //const Vector3DFloat vertex2AsFloat = (static_cast(vertex2) / 2.0f) - offset; const uint8_t material0 = vertMaterials[triTable[iCubeIndex][i ]]; const uint8_t material1 = vertMaterials[triTable[iCubeIndex][i+1]]; const uint8_t material2 = vertMaterials[triTable[iCubeIndex][i+2]]; //If all the materials are the same, we just need one triangle for that material with all the alphas set high. SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f); singleMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); }//For each triangle }//For each cell //FIXME - can it happen that we have no vertices or triangles? Should exit early? //for(std::map::iterator iterPatch = surfacePatchMapResult.begin(); iterPatch != surfacePatchMapResult.end(); ++iterPatch) { std::vector::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != singleMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeNormal(volumeData, static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; } } } Vector3DFloat computeNormal(BlockVolume* volumeData, const Vector3DFloat& position, NormalGenerationMethod normalGenerationMethod) { const float posX = position.getX(); const float posY = position.getY(); const float posZ = position.getZ(); const uint16_t floorX = static_cast(posX); const uint16_t floorY = static_cast(posY); const uint16_t floorZ = static_cast(posZ); //Check all corners are within the volume, allowing a boundary for gradient estimation bool lowerCornerInside = volumeData->containsPoint(Vector3DInt32(floorX, floorY, floorZ),1); bool upperCornerInside = volumeData->containsPoint(Vector3DInt32(floorX+1, floorY+1, floorZ+1),1); if((!lowerCornerInside) || (!upperCornerInside)) { normalGenerationMethod = SIMPLE; } Vector3DFloat result; BlockVolumeIterator volIter(*volumeData); //FIXME - save this somewhere - could be expensive to create? if(normalGenerationMethod == SOBEL) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeSobelGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeSobelGradient(volIter); result = ((gradFloor + gradCeil) * -1.0f); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == CENTRAL_DIFFERENCE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeCentralDifferenceGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeCentralDifferenceGradient(volIter); result = ((gradFloor + gradCeil) * -1.0f); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == SIMPLE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const uint8_t uFloor = volIter.getVoxel() > 0 ? 1 : 0; if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel1px0py0pz() > 0 ? 1 : 0; result = Vector3DFloat(static_cast(uFloor - uCeil),0.0,0.0); } else if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px1py0pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0,static_cast(uFloor - uCeil),0.0); } else if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px0py1pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0, 0.0,static_cast(uFloor - uCeil)); } } return result; } void generateSmoothMeshDataForRegion(BlockVolume* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch) { //When generating the mesh for a region we actually look one voxel outside it in the // back, bottom, right direction. Protect against access violations by cropping region here Region regVolume = volumeData->getEnclosingRegion(); regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(1,1,1)); region.cropTo(regVolume); //Offset from lower block corner const Vector3DFloat offset = static_cast(region.getLowerCorner()); Vector3DFloat vertlist[12]; uint8_t vertMaterials[12]; BlockVolumeIterator volIter(*volumeData); volIter.setValidRegion(region); const float threshold = 0.5f; ////////////////////////////////////////////////////////////////////////// //Get mesh data ////////////////////////////////////////////////////////////////////////// //Iterate over each cell in the region for(volIter.setPosition(region.getLowerCorner().getX(),region.getLowerCorner().getY(), region.getLowerCorner().getZ());volIter.isValidForRegion();volIter.moveForwardInRegionXYZ()) { //Current position const uint16_t x = volIter.getPosX(); const uint16_t y = volIter.getPosY(); const uint16_t z = volIter.getPosZ(); //Voxels values BlockVolumeIterator tempVolIter(*volumeData); tempVolIter.setPosition(x,y,z); const float v000 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x+1,y,z); const float v100 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x,y+1,z); const float v010 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x+1,y+1,z); const float v110 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x,y,z+1); const float v001 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x+1,y,z+1); const float v101 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x,y+1,z+1); const float v011 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x+1,y+1,z+1); const float v111 = tempVolIter.getAveragedVoxel(1); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if (v000 < threshold) iCubeIndex |= 1; if (v100 < threshold) iCubeIndex |= 2; if (v110 < threshold) iCubeIndex |= 4; if (v010 < threshold) iCubeIndex |= 8; if (v001 < threshold) iCubeIndex |= 16; if (v101 < threshold) iCubeIndex |= 32; if (v111 < threshold) iCubeIndex |= 64; if (v011 < threshold) iCubeIndex |= 128; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { float a = v000; float b = v100; float val = (threshold-a)/(b-a); vertlist[0].setX(x + val); vertlist[0].setY(y); vertlist[0].setZ(z); vertMaterials[0] = 1;//v000 | v100; //Because one of these is 0, the or operation takes the max. } if (edgeTable[iCubeIndex] & 2) { float a = v100; float b = v110; float val = (threshold-a)/(b-a); vertlist[1].setX(x + 1.0f); vertlist[1].setY(y + val); vertlist[1].setZ(z); vertMaterials[1] = 1;//v100 | v110; } if (edgeTable[iCubeIndex] & 4) { float a = v010; float b = v110; float val = (threshold-a)/(b-a); vertlist[2].setX(x + val); vertlist[2].setY(y + 1.0f); vertlist[2].setZ(z); vertMaterials[2] = 1;//v010 | v110; } if (edgeTable[iCubeIndex] & 8) { float a = v000; float b = v010; float val = (threshold-a)/(b-a); vertlist[3].setX(x); vertlist[3].setY(y + val); vertlist[3].setZ(z); vertMaterials[3] = 1;//v000 | v010; } if (edgeTable[iCubeIndex] & 16) { float a = v001; float b = v101; float val = (threshold-a)/(b-a); vertlist[4].setX(x + val); vertlist[4].setY(y); vertlist[4].setZ(z + 1.0f); vertMaterials[4] = 1;//v001 | v101; } if (edgeTable[iCubeIndex] & 32) { float a = v101; float b = v111; float val = (threshold-a)/(b-a); vertlist[5].setX(x + 1.0f); vertlist[5].setY(y + val); vertlist[5].setZ(z + 1.0f); vertMaterials[5] = 1;//v101 | v111; } if (edgeTable[iCubeIndex] & 64) { float a = v011; float b = v111; float val = (threshold-a)/(b-a); vertlist[6].setX(x + val); vertlist[6].setY(y + 1.0f); vertlist[6].setZ(z + 1.0f); vertMaterials[6] = 1;//v011 | v111; } if (edgeTable[iCubeIndex] & 128) { float a = v001; float b = v011; float val = (threshold-a)/(b-a); vertlist[7].setX(x); vertlist[7].setY(y + val); vertlist[7].setZ(z + 1.0f); vertMaterials[7] = 1;//v001 | v011; } if (edgeTable[iCubeIndex] & 256) { float a = v000; float b = v001; float val = (threshold-a)/(b-a); vertlist[8].setX(x); vertlist[8].setY(y); vertlist[8].setZ(z + val); vertMaterials[8] = 1;//v000 | v001; } if (edgeTable[iCubeIndex] & 512) { float a = v100; float b = v101; float val = (threshold-a)/(b-a); vertlist[9].setX(x + 1.0f); vertlist[9].setY(y); vertlist[9].setZ(z + val); vertMaterials[9] = 1;//v100 | v101; } if (edgeTable[iCubeIndex] & 1024) { float a = v110; float b = v111; float val = (threshold-a)/(b-a); vertlist[10].setX(x + 1.0f); vertlist[10].setY(y + 1.0f); vertlist[10].setZ(z + val); vertMaterials[10] = 1;//v110 | v111; } if (edgeTable[iCubeIndex] & 2048) { float a = v010; float b = v011; float val = (threshold-a)/(b-a); vertlist[11].setX(x); vertlist[11].setY(y + 1.0f); vertlist[11].setZ(z + val); vertMaterials[11] = 1;//v010 | v011; } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { //The three vertices forming a triangle const Vector3DFloat vertex0 = vertlist[triTable[iCubeIndex][i ]] - offset; const Vector3DFloat vertex1 = vertlist[triTable[iCubeIndex][i+1]] - offset; const Vector3DFloat vertex2 = vertlist[triTable[iCubeIndex][i+2]] - offset; const uint8_t material0 = vertMaterials[triTable[iCubeIndex][i ]]; const uint8_t material1 = vertMaterials[triTable[iCubeIndex][i+1]]; const uint8_t material2 = vertMaterials[triTable[iCubeIndex][i+2]]; SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f); singleMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); }//For each triangle }//For each cell //FIXME - can it happen that we have no vertices or triangles? Should exit early? //for(std::map::iterator iterPatch = surfacePatchMapResult.begin(); iterPatch != surfacePatchMapResult.end(); ++iterPatch) { std::vector::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != singleMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeSmoothNormal(volumeData, static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; } } } Vector3DFloat computeSmoothNormal(BlockVolume* volumeData, const Vector3DFloat& position, NormalGenerationMethod normalGenerationMethod) { const float posX = position.getX(); const float posY = position.getY(); const float posZ = position.getZ(); const uint16_t floorX = static_cast(posX); const uint16_t floorY = static_cast(posY); const uint16_t floorZ = static_cast(posZ); //Check all corners are within the volume, allowing a boundary for gradient estimation bool lowerCornerInside = volumeData->containsPoint(Vector3DInt32(floorX, floorY, floorZ),1); bool upperCornerInside = volumeData->containsPoint(Vector3DInt32(floorX+1, floorY+1, floorZ+1),1); if((!lowerCornerInside) || (!upperCornerInside)) { normalGenerationMethod = SIMPLE; } Vector3DFloat result; BlockVolumeIterator volIter(*volumeData); //FIXME - save this somewhere - could be expensive to create? if(normalGenerationMethod == SOBEL) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeSobelGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeSobelGradient(volIter); result = ((gradFloor + gradCeil) * -1.0f); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == CENTRAL_DIFFERENCE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeSmoothCentralDifferenceGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeSmoothCentralDifferenceGradient(volIter); result = ((gradFloor + gradCeil) * -1.0f); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == SIMPLE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const uint8_t uFloor = volIter.getVoxel() > 0 ? 1 : 0; if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel1px0py0pz() > 0 ? 1 : 0; result = Vector3DFloat(static_cast(uFloor - uCeil),0.0,0.0); } else if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px1py0pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0,static_cast(uFloor - uCeil),0.0); } else if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px0py1pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0, 0.0,static_cast(uFloor - uCeil)); } } return result; } }