/******************************************************************************* * The MIT License (MIT) * * Copyright (c) 2015 David Williams and Matthew Williams * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. *******************************************************************************/ namespace PolyVox { // This function is based on Christer Ericson's code and description of the 'Uniform Grid Intersection Test' in // 'Real Time Collision Detection'. The following information from the errata on the book website is also relevent: // // pages 326-327. In the function VisitCellsOverlapped() the two lines calculating tx and ty are incorrect. // The less-than sign in each line should be a greater-than sign. That is, the two lines should read: // // float tx = ((x1 > x2) ? (x1 - minx) : (maxx - x1)) / Abs(x2 - x1); // float ty = ((y1 > y2) ? (y1 - miny) : (maxy - y1)) / Abs(y2 - y1); // // Thanks to Jetro Lauha of Fathammer in Helsinki, Finland for reporting this error. // // Jetro also points out that the computations of i, j, iend, and jend are incorrectly rounded if the line // coordinates are allowed to go negative. While that was not really the intent of the code -- that is, I // assumed grids to be numbered from (0, 0) to (m, n) -- I'm at fault for not making my assumption clear. // Where it is important to handle negative line coordinates the computation of these variables should be // changed to something like this: // // // Determine start grid cell coordinates (i, j) // int i = (int)floorf(x1 / CELL_SIDE); // int j = (int)floorf(y1 / CELL_SIDE); // // // Determine end grid cell coordinates (iend, jend) // int iend = (int)floorf(x2 / CELL_SIDE); // int jend = (int)floorf(y2 / CELL_SIDE); // // page 328. The if-statement that reads "if (ty <= tx && ty <= tz)" has a superfluous condition. // It should simply read "if (ty <= tz)". // // This error was reported by Joey Hammer (PixelActive). /** * Cast a ray through a volume by specifying the start and end positions * * The ray will move from \a v3dStart to \a v3dEnd, calling \a callback for each * voxel it passes through until \a callback returns \a false. In this case it * returns a RaycastResults::Interupted. If it passes from start to end * without \a callback returning \a false, it returns RaycastResults::Completed. * * \param volData The volume to pass the ray though * \param v3dStart The start position in the volume * \param v3dEnd The end position in the volume * \param callback The callback to call for each voxel * * \return A RaycastResults designating whether the ray hit anything or not */ template RaycastResult raycastWithEndpoints(VolumeType* volData, const Vector3DFloat& v3dStart, const Vector3DFloat& v3dEnd, Callback& callback) { typename VolumeType::Sampler sampler(volData); //The doRaycast function is assuming that it is iterating over the areas defined between //voxels. We actually want to define the areas as being centered on voxels (as this is //what the CubicSurfaceExtractor generates). We add 0.5 here to adjust for this. const float x1 = v3dStart.getX() + 0.5f; const float y1 = v3dStart.getY() + 0.5f; const float z1 = v3dStart.getZ() + 0.5f; const float x2 = v3dEnd.getX() + 0.5f; const float y2 = v3dEnd.getY() + 0.5f; const float z2 = v3dEnd.getZ() + 0.5f; int i = (int)floorf(x1); int j = (int)floorf(y1); int k = (int)floorf(z1); const int iend = (int)floorf(x2); const int jend = (int)floorf(y2); const int kend = (int)floorf(z2); const int di = ((x1 < x2) ? 1 : ((x1 > x2) ? -1 : 0)); const int dj = ((y1 < y2) ? 1 : ((y1 > y2) ? -1 : 0)); const int dk = ((z1 < z2) ? 1 : ((z1 > z2) ? -1 : 0)); const float deltatx = 1.0f / std::abs(x2 - x1); const float deltaty = 1.0f / std::abs(y2 - y1); const float deltatz = 1.0f / std::abs(z2 - z1); const float minx = floorf(x1), maxx = minx + 1.0f; float tx = ((x1 > x2) ? (x1 - minx) : (maxx - x1)) * deltatx; const float miny = floorf(y1), maxy = miny + 1.0f; float ty = ((y1 > y2) ? (y1 - miny) : (maxy - y1)) * deltaty; const float minz = floorf(z1), maxz = minz + 1.0f; float tz = ((z1 > z2) ? (z1 - minz) : (maxz - z1)) * deltatz; sampler.setPosition(i,j,k); for(;;) { if(!callback(sampler)) { return RaycastResults::Interupted; } if(tx <= ty && tx <= tz) { if(i == iend) break; tx += deltatx; i += di; if(di == 1) sampler.movePositiveX(); if(di == -1) sampler.moveNegativeX(); } else if (ty <= tz) { if(j == jend) break; ty += deltaty; j += dj; if(dj == 1) sampler.movePositiveY(); if(dj == -1) sampler.moveNegativeY(); } else { if(k == kend) break; tz += deltatz; k += dk; if(dk == 1) sampler.movePositiveZ(); if(dk == -1) sampler.moveNegativeZ(); } } return RaycastResults::Completed; } /** * Cast a ray through a volume by specifying the start and a direction * * The ray will move from \a v3dStart along \a v3dDirectionAndLength, calling * \a callback for each voxel it passes through until \a callback returns * \a false. In this case it returns a RaycastResults::Interupted. If it * passes from start to end without \a callback returning \a false, it * returns RaycastResults::Completed. * * \note These has been confusion in the past with people not realising * that the length of the direction vector is important. Most graphics API can provide * a camera position and view direction for picking purposes, but the view direction is * usually normalised (i.e. of length one). If you use this view direction directly you * will only iterate over a single voxel and won't find what you are looking for. Instead * you must scale the direction vector so that it's length represents the maximum distance * over which you want the ray to be cast. * * \param volData The volume to pass the ray though * \param v3dStart The start position in the volume * \param v3dDirectionAndLength The direction and length of the ray * \param callback The callback to call for each voxel * * \return A RaycastResults designating whether the ray hit anything or not */ template RaycastResult raycastWithDirection(VolumeType* volData, const Vector3DFloat& v3dStart, const Vector3DFloat& v3dDirectionAndLength, Callback& callback) { Vector3DFloat v3dEnd = v3dStart + v3dDirectionAndLength; return raycastWithEndpoints(volData, v3dStart, v3dEnd, callback); } }