#pragma region License /****************************************************************************** This file is part of the PolyVox library Copyright (C) 2006 David Williams This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ******************************************************************************/ #pragma endregion #include "GradientEstimators.h" #include "IndexedSurfacePatch.h" #include "LinearVolume.h" #include "MarchingCubesTables.h" #include "PolyVoxSceneManager.h" #include "RegionGeometry.h" #include "SurfaceVertex.h" #include "Utility.h" #include "Vector.h" #include "BlockVolume.h" #include "VolumeIterator.h" using namespace boost; namespace PolyVox { ////////////////////////////////////////////////////////////////////////// // PolyVoxSceneManager ////////////////////////////////////////////////////////////////////////// PolyVoxSceneManager::PolyVoxSceneManager() :volumeData(0) ,useNormalSmoothing(false) ,normalSmoothingFilterSize(1) ,m_normalGenerationMethod(SOBEL) ,m_bHaveGeneratedMeshes(false) { //sceneNodes.clear();` } PolyVoxSceneManager::~PolyVoxSceneManager() { } void PolyVoxSceneManager::setVolumeData(BlockVolume* volumeDataToSet) { volumeData = volumeDataToSet; volSurfaceUpToDate = new LinearVolume(PolyVox::logBase2(POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS)); } std::list PolyVoxSceneManager::getChangedRegionGeometry(void) { std::list listChangedRegionGeometry; //Regenerate meshes. for(uint16_t regionZ = 0; regionZ < POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS; ++regionZ) //for(uint16_t regionZ = 6; regionZ < 7; ++regionZ) { for(uint16_t regionY = 0; regionY < POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS; ++regionY) //for(uint16_t regionY = 6; regionY < 7; ++regionY) { for(uint16_t regionX = 0; regionX < POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS; ++regionX) //for(uint16_t regionX = 3; regionX < 4; ++regionX) { //if(surfaceUpToDate[regionX][regionY][regionZ] == false) if(volSurfaceUpToDate->getVoxelAt(regionX, regionY, regionZ) == false) { //Generate the surface RegionGeometry regionGeometry; regionGeometry.m_patchSingleMaterial = new IndexedSurfacePatch(false); regionGeometry.m_patchMultiMaterial = new IndexedSurfacePatch(true); regionGeometry.m_v3dRegionPosition = Vector3DInt32(regionX, regionY, regionZ); generateRoughMeshDataForRegion(regionX,regionY,regionZ, regionGeometry.m_patchSingleMaterial, regionGeometry.m_patchMultiMaterial); regionGeometry.m_bContainsSingleMaterialPatch = regionGeometry.m_patchSingleMaterial->getVertices().size() > 0; regionGeometry.m_bContainsMultiMaterialPatch = regionGeometry.m_patchMultiMaterial->getVertices().size() > 0; regionGeometry.m_bIsEmpty = ((regionGeometry.m_patchSingleMaterial->getVertices().size() == 0) && (regionGeometry.m_patchMultiMaterial->getIndices().size() == 0)); listChangedRegionGeometry.push_back(regionGeometry); } } } } return listChangedRegionGeometry; } void PolyVoxSceneManager::setAllUpToDateFlagsTo(bool newUpToDateValue) { for(uint16_t blockZ = 0; blockZ < POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS; ++blockZ) { for(uint16_t blockY = 0; blockY < POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS; ++blockY) { for(uint16_t blockX = 0; blockX < POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS; ++blockX) { //surfaceUpToDate[blockX][blockY][blockZ] = newUpToDateValue; volSurfaceUpToDate->setVoxelAt(blockX, blockY, blockZ, newUpToDateValue); } } } } void PolyVoxSceneManager::createSphereAt(Vector3DFloat centre, float radius, uint8_t value, bool painting) { int firstX = static_cast(std::floor(centre.x() - radius)); int firstY = static_cast(std::floor(centre.y() - radius)); int firstZ = static_cast(std::floor(centre.z() - radius)); int lastX = static_cast(std::ceil(centre.x() + radius)); int lastY = static_cast(std::ceil(centre.y() + radius)); int lastZ = static_cast(std::ceil(centre.z() + radius)); float radiusSquared = radius * radius; //Check bounds firstX = std::max(firstX,0); firstY = std::max(firstY,0); firstZ = std::max(firstZ,0); lastX = std::min(lastX,int(volumeData->getSideLength()-1)); lastY = std::min(lastY,int(volumeData->getSideLength()-1)); lastZ = std::min(lastZ,int(volumeData->getSideLength()-1)); VolumeIterator volIter(*volumeData); volIter.setValidRegion(firstX,firstY,firstZ,lastX,lastY,lastZ); volIter.setPosition(firstX,firstY,firstZ); while(volIter.isValidForRegion()) { //if((volIter.getPosX()*volIter.getPosX()+volIter.getPosY()*volIter.getPosY()+volIter.getPosZ()*volIter.getPosZ()) < radiusSquared) if((centre - Vector3DFloat(volIter.getPosX(),volIter.getPosY(),volIter.getPosZ())).lengthSquared() <= radiusSquared) { if(painting) { if(volIter.getVoxel() != 0) { volIter.setVoxel(value); //volIter.setVoxelAt(volIter.getPosX(),volIter.getPosY(),volIter.getPosZ(),value); } } else { volIter.setVoxel(value); //volIter.setVoxelAt(volIter.getPosX(),volIter.getPosY(),volIter.getPosZ(),value); } //markVoxelChanged(volIter.getPosX(),volIter.getPosY(),volIter.getPosZ()); //FIXME - create a version of this function to mark larger regions at a time. } volIter.moveForwardInRegion(); } markRegionChanged(firstX,firstY,firstZ,lastX,lastY,lastZ); } void PolyVoxSceneManager::generateRoughMeshDataForRegion(const uint16_t regionX, const uint16_t regionY, const uint16_t regionZ, IndexedSurfacePatch* singleMaterialPatch, IndexedSurfacePatch* multiMaterialPatch) const { //First and last voxels in the region const uint16_t firstX = regionX * POLYVOX_REGION_SIDE_LENGTH; const uint16_t firstY = regionY * POLYVOX_REGION_SIDE_LENGTH; const uint16_t firstZ = regionZ * POLYVOX_REGION_SIDE_LENGTH; const uint16_t lastX = (std::min)(firstX + POLYVOX_REGION_SIDE_LENGTH-1,volumeData->getSideLength()-2); const uint16_t lastY = (std::min)(firstY + POLYVOX_REGION_SIDE_LENGTH-1,volumeData->getSideLength()-2); const uint16_t lastZ = (std::min)(firstZ + POLYVOX_REGION_SIDE_LENGTH-1,volumeData->getSideLength()-2); //Offset from lower block corner const Vector3DFloat offset(firstX,firstY,firstZ); Vector3DFloat vertlist[12]; uint8_t vertMaterials[12]; VolumeIterator volIter(*volumeData); volIter.setValidRegion(firstX,firstY,firstZ,lastX,lastY,lastZ); ////////////////////////////////////////////////////////////////////////// //Get mesh data ////////////////////////////////////////////////////////////////////////// //Iterate over each cell in the region for(volIter.setPosition(firstX,firstY,firstZ);volIter.isValidForRegion();volIter.moveForwardInRegion()) { //Current position const uint16_t x = volIter.getPosX(); const uint16_t y = volIter.getPosY(); const uint16_t z = volIter.getPosZ(); //Voxels values const uint8_t v000 = volIter.getVoxel(); const uint8_t v100 = volIter.peekVoxel1px0py0pz(); const uint8_t v010 = volIter.peekVoxel0px1py0pz(); const uint8_t v110 = volIter.peekVoxel1px1py0pz(); const uint8_t v001 = volIter.peekVoxel0px0py1pz(); const uint8_t v101 = volIter.peekVoxel1px0py1pz(); const uint8_t v011 = volIter.peekVoxel0px1py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { vertlist[0].setX(x + 0.5f); vertlist[0].setY(y); vertlist[0].setZ(z); vertMaterials[0] = v000 | v100; //Because one of these is 0, the or operation takes the max. } if (edgeTable[iCubeIndex] & 2) { vertlist[1].setX(x + 1.0f); vertlist[1].setY(y + 0.5f); vertlist[1].setZ(z); vertMaterials[1] = v100 | v110; } if (edgeTable[iCubeIndex] & 4) { vertlist[2].setX(x + 0.5f); vertlist[2].setY(y + 1.0f); vertlist[2].setZ(z); vertMaterials[2] = v010 | v110; } if (edgeTable[iCubeIndex] & 8) { vertlist[3].setX(x); vertlist[3].setY(y + 0.5f); vertlist[3].setZ(z); vertMaterials[3] = v000 | v010; } if (edgeTable[iCubeIndex] & 16) { vertlist[4].setX(x + 0.5f); vertlist[4].setY(y); vertlist[4].setZ(z + 1.0f); vertMaterials[4] = v001 | v101; } if (edgeTable[iCubeIndex] & 32) { vertlist[5].setX(x + 1.0f); vertlist[5].setY(y + 0.5f); vertlist[5].setZ(z + 1.0f); vertMaterials[5] = v101 | v111; } if (edgeTable[iCubeIndex] & 64) { vertlist[6].setX(x + 0.5f); vertlist[6].setY(y + 1.0f); vertlist[6].setZ(z + 1.0f); vertMaterials[6] = v011 | v111; } if (edgeTable[iCubeIndex] & 128) { vertlist[7].setX(x); vertlist[7].setY(y + 0.5f); vertlist[7].setZ(z + 1.0f); vertMaterials[7] = v001 | v011; } if (edgeTable[iCubeIndex] & 256) { vertlist[8].setX(x); vertlist[8].setY(y); vertlist[8].setZ(z + 0.5f); vertMaterials[8] = v000 | v001; } if (edgeTable[iCubeIndex] & 512) { vertlist[9].setX(x + 1.0f); vertlist[9].setY(y); vertlist[9].setZ(z + 0.5f); vertMaterials[9] = v100 | v101; } if (edgeTable[iCubeIndex] & 1024) { vertlist[10].setX(x + 1.0f); vertlist[10].setY(y + 1.0f); vertlist[10].setZ(z + 0.5f); vertMaterials[10] = v110 | v111; } if (edgeTable[iCubeIndex] & 2048) { vertlist[11].setX(x); vertlist[11].setY(y + 1.0f); vertlist[11].setZ(z + 0.5f); vertMaterials[11] = v010 | v011; } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { //The three vertices forming a triangle const Vector3DFloat vertex0 = vertlist[triTable[iCubeIndex][i ]] - offset; const Vector3DFloat vertex1 = vertlist[triTable[iCubeIndex][i+1]] - offset; const Vector3DFloat vertex2 = vertlist[triTable[iCubeIndex][i+2]] - offset; //Cast to floats and divide by two. //const Vector3DFloat vertex0AsFloat = (static_cast(vertex0) / 2.0f) - offset; //const Vector3DFloat vertex1AsFloat = (static_cast(vertex1) / 2.0f) - offset; //const Vector3DFloat vertex2AsFloat = (static_cast(vertex2) / 2.0f) - offset; const uint8_t material0 = vertMaterials[triTable[iCubeIndex][i ]]; const uint8_t material1 = vertMaterials[triTable[iCubeIndex][i+1]]; const uint8_t material2 = vertMaterials[triTable[iCubeIndex][i+2]]; //If all the materials are the same, we just need one triangle for that material with all the alphas set high. if((material0 == material1) && (material1 == material2)) { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f); singleMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } else if(material0 == material1) { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1f,0.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material2 + 0.1f,0.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material2 + 0.1f,0.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } else if(material0 == material2) { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1f,0.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1f,1.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1f,0.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1f,0.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } else if(material1 == material2) { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1f,0.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1f,1.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1f,0.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1f,0.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } else { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1f,0.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1f,0.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1f,0.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1f,0.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material2 + 0.1f,0.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material2 + 0.1f,0.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } //If there not all the same, we need one triangle for each unique material. //We'll also need some vertices with low alphas for blending. /*else { SurfaceVertex surfaceVertex0Alpha0(vertex0,0.0); SurfaceVertex surfaceVertex1Alpha0(vertex1,0.0); SurfaceVertex surfaceVertex2Alpha0(vertex2,0.0); if(material0 == material1) { surfacePatchMapResult[material0]->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha0); surfacePatchMapResult[material2]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha0, surfaceVertex2Alpha1); } else if(material1 == material2) { surfacePatchMapResult[material1]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha1, surfaceVertex2Alpha1); surfacePatchMapResult[material0]->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha0, surfaceVertex2Alpha0); } else if(material2 == material0) { surfacePatchMapResult[material0]->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha0, surfaceVertex2Alpha1); surfacePatchMapResult[material1]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha1, surfaceVertex2Alpha0); } else { surfacePatchMapResult[material0]->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha0, surfaceVertex2Alpha0); surfacePatchMapResult[material1]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha1, surfaceVertex2Alpha0); surfacePatchMapResult[material2]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha0, surfaceVertex2Alpha1); } }*/ }//For each triangle }//For each cell //FIXME - can it happen that we have no vertices or triangles? Should exit early? //for(std::map::iterator iterPatch = surfacePatchMapResult.begin(); iterPatch != surfacePatchMapResult.end(); ++iterPatch) { std::vector::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != singleMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeNormal(static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; } iterSurfaceVertex = multiMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != multiMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeNormal(static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; } uint16_t noOfRemovedVertices = 0; //do { //noOfRemovedVertices = iterPatch->second.decimate(); } //while(noOfRemovedVertices > 10); //We don't worry about the last few vertices - it's not worth the overhead of calling the function. } //return singleMaterialPatch; } void PolyVoxSceneManager::generateSmoothMeshDataForRegion(const uint16_t regionX, const uint16_t regionY, const uint16_t regionZ, IndexedSurfacePatch* singleMaterialPatch, IndexedSurfacePatch* multiMaterialPatch) const { //First and last voxels in the region const uint16_t firstX = regionX * POLYVOX_REGION_SIDE_LENGTH; const uint16_t firstY = regionY * POLYVOX_REGION_SIDE_LENGTH; const uint16_t firstZ = regionZ * POLYVOX_REGION_SIDE_LENGTH; const uint16_t lastX = (std::min)(firstX + POLYVOX_REGION_SIDE_LENGTH-1,volumeData->getSideLength()-2); const uint16_t lastY = (std::min)(firstY + POLYVOX_REGION_SIDE_LENGTH-1,volumeData->getSideLength()-2); const uint16_t lastZ = (std::min)(firstZ + POLYVOX_REGION_SIDE_LENGTH-1,volumeData->getSideLength()-2); //Offset from lower block corner const Vector3DFloat offset(firstX,firstY,firstZ); Vector3DFloat vertlist[12]; uint8_t vertMaterials[12]; VolumeIterator volIter(*volumeData); volIter.setValidRegion(firstX,firstY,firstZ,lastX,lastY,lastZ); const float threshold = 0.5f; ////////////////////////////////////////////////////////////////////////// //Get mesh data ////////////////////////////////////////////////////////////////////////// //Iterate over each cell in the region for(volIter.setPosition(firstX,firstY,firstZ);volIter.isValidForRegion();volIter.moveForwardInRegion()) { //Current position const uint16_t x = volIter.getPosX(); const uint16_t y = volIter.getPosY(); const uint16_t z = volIter.getPosZ(); //Voxels values VolumeIterator tempVolIter(*volumeData); tempVolIter.setPosition(x,y,z); const float v000 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x+1,y,z); const float v100 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x,y+1,z); const float v010 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x+1,y+1,z); const float v110 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x,y,z+1); const float v001 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x+1,y,z+1); const float v101 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x,y+1,z+1); const float v011 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x+1,y+1,z+1); const float v111 = tempVolIter.getAveragedVoxel(1); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if (v000 < threshold) iCubeIndex |= 1; if (v100 < threshold) iCubeIndex |= 2; if (v110 < threshold) iCubeIndex |= 4; if (v010 < threshold) iCubeIndex |= 8; if (v001 < threshold) iCubeIndex |= 16; if (v101 < threshold) iCubeIndex |= 32; if (v111 < threshold) iCubeIndex |= 64; if (v011 < threshold) iCubeIndex |= 128; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { float a = v000; float b = v100; float val = (threshold-a)/(b-a); vertlist[0].setX(x + val); vertlist[0].setY(y); vertlist[0].setZ(z); vertMaterials[0] = 1;//v000 | v100; //Because one of these is 0, the or operation takes the max. } if (edgeTable[iCubeIndex] & 2) { float a = v100; float b = v110; float val = (threshold-a)/(b-a); vertlist[1].setX(x + 1.0f); vertlist[1].setY(y + val); vertlist[1].setZ(z); vertMaterials[1] = 1;//v100 | v110; } if (edgeTable[iCubeIndex] & 4) { float a = v010; float b = v110; float val = (threshold-a)/(b-a); vertlist[2].setX(x + val); vertlist[2].setY(y + 1.0f); vertlist[2].setZ(z); vertMaterials[2] = 1;//v010 | v110; } if (edgeTable[iCubeIndex] & 8) { float a = v000; float b = v010; float val = (threshold-a)/(b-a); vertlist[3].setX(x); vertlist[3].setY(y + val); vertlist[3].setZ(z); vertMaterials[3] = 1;//v000 | v010; } if (edgeTable[iCubeIndex] & 16) { float a = v001; float b = v101; float val = (threshold-a)/(b-a); vertlist[4].setX(x + val); vertlist[4].setY(y); vertlist[4].setZ(z + 1.0f); vertMaterials[4] = 1;//v001 | v101; } if (edgeTable[iCubeIndex] & 32) { float a = v101; float b = v111; float val = (threshold-a)/(b-a); vertlist[5].setX(x + 1.0f); vertlist[5].setY(y + val); vertlist[5].setZ(z + 1.0f); vertMaterials[5] = 1;//v101 | v111; } if (edgeTable[iCubeIndex] & 64) { float a = v011; float b = v111; float val = (threshold-a)/(b-a); vertlist[6].setX(x + val); vertlist[6].setY(y + 1.0f); vertlist[6].setZ(z + 1.0f); vertMaterials[6] = 1;//v011 | v111; } if (edgeTable[iCubeIndex] & 128) { float a = v001; float b = v011; float val = (threshold-a)/(b-a); vertlist[7].setX(x); vertlist[7].setY(y + val); vertlist[7].setZ(z + 1.0f); vertMaterials[7] = 1;//v001 | v011; } if (edgeTable[iCubeIndex] & 256) { float a = v000; float b = v001; float val = (threshold-a)/(b-a); vertlist[8].setX(x); vertlist[8].setY(y); vertlist[8].setZ(z + val); vertMaterials[8] = 1;//v000 | v001; } if (edgeTable[iCubeIndex] & 512) { float a = v100; float b = v101; float val = (threshold-a)/(b-a); vertlist[9].setX(x + 1.0f); vertlist[9].setY(y); vertlist[9].setZ(z + val); vertMaterials[9] = 1;//v100 | v101; } if (edgeTable[iCubeIndex] & 1024) { float a = v110; float b = v111; float val = (threshold-a)/(b-a); vertlist[10].setX(x + 1.0f); vertlist[10].setY(y + 1.0f); vertlist[10].setZ(z + val); vertMaterials[10] = 1;//v110 | v111; } if (edgeTable[iCubeIndex] & 2048) { float a = v010; float b = v011; float val = (threshold-a)/(b-a); vertlist[11].setX(x); vertlist[11].setY(y + 1.0f); vertlist[11].setZ(z + val); vertMaterials[11] = 1;//v010 | v011; } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { //The three vertices forming a triangle const Vector3DFloat vertex0 = vertlist[triTable[iCubeIndex][i ]] - offset; const Vector3DFloat vertex1 = vertlist[triTable[iCubeIndex][i+1]] - offset; const Vector3DFloat vertex2 = vertlist[triTable[iCubeIndex][i+2]] - offset; const uint8_t material0 = vertMaterials[triTable[iCubeIndex][i ]]; const uint8_t material1 = vertMaterials[triTable[iCubeIndex][i+1]]; const uint8_t material2 = vertMaterials[triTable[iCubeIndex][i+2]]; //If all the materials are the same, we just need one triangle for that material with all the alphas set high. /*if((material0 == material1) && (material1 == material2)) {*/ SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f); singleMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); /*} else if(material0 == material1) { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,1.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,0.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material2 + 0.1,0.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material2 + 0.1,0.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1,1.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } else if(material0 == material2) { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,0.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,1.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1,0.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1,0.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } else if(material1 == material2) { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1,0.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1,1.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,0.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,0.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } else { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,0.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,0.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1,0.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1,0.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material2 + 0.1,0.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material2 + 0.1,0.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1,1.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } }*/ }//For each triangle }//For each cell //FIXME - can it happen that we have no vertices or triangles? Should exit early? //for(std::map::iterator iterPatch = surfacePatchMapResult.begin(); iterPatch != surfacePatchMapResult.end(); ++iterPatch) { std::vector::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != singleMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeSmoothNormal(static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; } iterSurfaceVertex = multiMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != multiMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeSmoothNormal(static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; } } } Vector3DFloat PolyVoxSceneManager::computeNormal(const Vector3DFloat& position, NormalGenerationMethod normalGenerationMethod) const { const float posX = position.x(); const float posY = position.y(); const float posZ = position.z(); const uint16_t floorX = static_cast(posX); const uint16_t floorY = static_cast(posY); const uint16_t floorZ = static_cast(posZ); //Check all corners are within the volume, allowing a boundary for gradient estimation bool lowerCornerInside = volumeData->containsPoint(Vector3DInt32(floorX, floorY, floorZ),1); bool upperCornerInside = volumeData->containsPoint(Vector3DInt32(floorX+1, floorY+1, floorZ+1),1); if((!lowerCornerInside) || (!upperCornerInside)) { normalGenerationMethod = SIMPLE; } Vector3DFloat result; VolumeIterator volIter(*volumeData); //FIXME - save this somewhere - could be expensive to create? if(normalGenerationMethod == SOBEL) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeSobelGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeSobelGradient(volIter); result = ((gradFloor + gradCeil) * -1.0); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == CENTRAL_DIFFERENCE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeCentralDifferenceGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeCentralDifferenceGradient(volIter); result = ((gradFloor + gradCeil) * -1.0); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == SIMPLE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const uint8_t uFloor = volIter.getVoxel() > 0 ? 1 : 0; if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel1px0py0pz() > 0 ? 1 : 0; result = Vector3DFloat(static_cast(uFloor - uCeil),0.0,0.0); } else if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px1py0pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0,static_cast(uFloor - uCeil),0.0); } else if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px0py1pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0, 0.0,static_cast(uFloor - uCeil)); } } return result; } Vector3DFloat PolyVoxSceneManager::computeSmoothNormal(const Vector3DFloat& position, NormalGenerationMethod normalGenerationMethod) const { const float posX = position.x(); const float posY = position.y(); const float posZ = position.z(); const uint16_t floorX = static_cast(posX); const uint16_t floorY = static_cast(posY); const uint16_t floorZ = static_cast(posZ); //Check all corners are within the volume, allowing a boundary for gradient estimation bool lowerCornerInside = volumeData->containsPoint(Vector3DInt32(floorX, floorY, floorZ),1); bool upperCornerInside = volumeData->containsPoint(Vector3DInt32(floorX+1, floorY+1, floorZ+1),1); if((!lowerCornerInside) || (!upperCornerInside)) { normalGenerationMethod = SIMPLE; } Vector3DFloat result; VolumeIterator volIter(*volumeData); //FIXME - save this somewhere - could be expensive to create? if(normalGenerationMethod == SOBEL) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeSobelGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeSobelGradient(volIter); result = ((gradFloor + gradCeil) * -1.0); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == CENTRAL_DIFFERENCE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeSmoothCentralDifferenceGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeSmoothCentralDifferenceGradient(volIter); result = ((gradFloor + gradCeil) * -1.0); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == SIMPLE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const uint8_t uFloor = volIter.getVoxel() > 0 ? 1 : 0; if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel1px0py0pz() > 0 ? 1 : 0; result = Vector3DFloat(static_cast(uFloor - uCeil),0.0,0.0); } else if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px1py0pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0,static_cast(uFloor - uCeil),0.0); } else if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px0py1pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0, 0.0,static_cast(uFloor - uCeil)); } } return result; } void PolyVoxSceneManager::markVoxelChanged(uint16_t x, uint16_t y, uint16_t z) { //If we are not on a boundary, just mark one region. if((x % POLYVOX_REGION_SIDE_LENGTH != 0) && (x % POLYVOX_REGION_SIDE_LENGTH != POLYVOX_REGION_SIDE_LENGTH-1) && (y % POLYVOX_REGION_SIDE_LENGTH != 0) && (y % POLYVOX_REGION_SIDE_LENGTH != POLYVOX_REGION_SIDE_LENGTH-1) && (z % POLYVOX_REGION_SIDE_LENGTH != 0) && (z % POLYVOX_REGION_SIDE_LENGTH != POLYVOX_REGION_SIDE_LENGTH-1)) { //surfaceUpToDate[x >> POLYVOX_REGION_SIDE_LENGTH_POWER][y >> POLYVOX_REGION_SIDE_LENGTH_POWER][z >> POLYVOX_REGION_SIDE_LENGTH_POWER] = false; volSurfaceUpToDate->setVoxelAt(x >> POLYVOX_REGION_SIDE_LENGTH_POWER, y >> POLYVOX_REGION_SIDE_LENGTH_POWER, z >> POLYVOX_REGION_SIDE_LENGTH_POWER, false); } else //Mark surrounding block as well { const uint16_t regionX = x >> POLYVOX_REGION_SIDE_LENGTH_POWER; const uint16_t regionY = y >> POLYVOX_REGION_SIDE_LENGTH_POWER; const uint16_t regionZ = z >> POLYVOX_REGION_SIDE_LENGTH_POWER; const uint16_t minRegionX = (std::max)(uint16_t(0),uint16_t(regionX-1)); const uint16_t minRegionY = (std::max)(uint16_t(0),uint16_t(regionY-1)); const uint16_t minRegionZ = (std::max)(uint16_t(0),uint16_t(regionZ-1)); const uint16_t maxRegionX = (std::min)(uint16_t(POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS-1),uint16_t(regionX+1)); const uint16_t maxRegionY = (std::min)(uint16_t(POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS-1),uint16_t(regionY+1)); const uint16_t maxRegionZ = (std::min)(uint16_t(POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS-1),uint16_t(regionZ+1)); for(uint16_t zCt = minRegionZ; zCt <= maxRegionZ; zCt++) { for(uint16_t yCt = minRegionY; yCt <= maxRegionY; yCt++) { for(uint16_t xCt = minRegionX; xCt <= maxRegionX; xCt++) { //surfaceUpToDate[xCt][yCt][zCt] = false; volSurfaceUpToDate->setVoxelAt(xCt,yCt,zCt,false); } } } } } void PolyVoxSceneManager::markRegionChanged(uint16_t firstX, uint16_t firstY, uint16_t firstZ, uint16_t lastX, uint16_t lastY, uint16_t lastZ) { const uint16_t firstRegionX = firstX >> POLYVOX_REGION_SIDE_LENGTH_POWER; const uint16_t firstRegionY = firstY >> POLYVOX_REGION_SIDE_LENGTH_POWER; const uint16_t firstRegionZ = firstZ >> POLYVOX_REGION_SIDE_LENGTH_POWER; const uint16_t lastRegionX = lastX >> POLYVOX_REGION_SIDE_LENGTH_POWER; const uint16_t lastRegionY = lastY >> POLYVOX_REGION_SIDE_LENGTH_POWER; const uint16_t lastRegionZ = lastZ >> POLYVOX_REGION_SIDE_LENGTH_POWER; for(uint16_t zCt = firstRegionZ; zCt <= lastRegionZ; zCt++) { for(uint16_t yCt = firstRegionY; yCt <= lastRegionY; yCt++) { for(uint16_t xCt = firstRegionX; xCt <= lastRegionX; xCt++) { //surfaceUpToDate[xCt][yCt][zCt] = false; volSurfaceUpToDate->setVoxelAt(xCt,yCt,zCt,false); } } } } uint16_t PolyVoxSceneManager::getSideLength(void) { return volumeData->getSideLength(); } uint8_t PolyVoxSceneManager::getMaterialIndexAt(uint16_t uX, uint16_t uY, uint16_t uZ) { if(volumeData->containsPoint(Vector3DInt32(uX,uY,uZ),0)) { VolumeIterator volIter(*volumeData); volIter.setPosition(uX,uY,uZ); return volIter.getVoxel(); } else { return 0; } } void PolyVoxSceneManager::setNormalGenerationMethod(NormalGenerationMethod method) { m_normalGenerationMethod = method; } /*bool PolyVoxSceneManager::containsPoint(Vector3DFloat pos, float boundary) { return volumeData->containsPoint(pos, boundary); } bool PolyVoxSceneManager::containsPoint(Vector3DInt32 pos, uint16_t boundary) { return volumeData->containsPoint(pos, boundary); }*/ /* void PolyVoxSceneManager::setAxisVisible(bool visible) { if(m_axisNode) m_axisNode->setVisible(visible); }*/ const BlockVolume* PolyVoxSceneManager::getVolumeData(void) const { return volumeData; } }