#pragma region License /****************************************************************************** This file is part of the PolyVox library Copyright (C) 2006 David Williams This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ******************************************************************************/ #pragma endregion #include "IndexedSurfacePatch.h" #include "progmesh.h" using namespace std; namespace PolyVox { IndexedSurfacePatch::IndexedSurfacePatch() { m_iTimeStamp = -1; } IndexedSurfacePatch::~IndexedSurfacePatch() { } const std::vector& IndexedSurfacePatch::getIndices(void) const { return m_vecTriangleIndices; } uint32_t IndexedSurfacePatch::getNoOfIndices(void) const { return m_vecTriangleIndices.size(); } uint32_t IndexedSurfacePatch::getNoOfNonUniformTrianges(void) const { uint32_t result = 0; for(uint32_t i = 0; i < m_vecTriangleIndices.size() - 2; i += 3) { if((m_vecVertices[m_vecTriangleIndices[i]].getMaterial() == m_vecVertices[m_vecTriangleIndices[i+1]].getMaterial()) && (m_vecVertices[m_vecTriangleIndices[i]].getMaterial() == m_vecVertices[m_vecTriangleIndices[i+2]].getMaterial())) { } else { result++; } } return result; } uint32_t IndexedSurfacePatch::getNoOfUniformTrianges(void) const { uint32_t result = 0; for(uint32_t i = 0; i < m_vecTriangleIndices.size() - 2; i += 3) { if((m_vecVertices[m_vecTriangleIndices[i]].getMaterial() == m_vecVertices[m_vecTriangleIndices[i+1]].getMaterial()) && (m_vecVertices[m_vecTriangleIndices[i]].getMaterial() == m_vecVertices[m_vecTriangleIndices[i+2]].getMaterial())) { result++; } } return result; } uint32_t IndexedSurfacePatch::getNoOfVertices(void) const { return m_vecVertices.size(); } std::vector& IndexedSurfacePatch::getRawVertexData(void) { return m_vecVertices; } const std::vector& IndexedSurfacePatch::getVertices(void) const { return m_vecVertices; } void IndexedSurfacePatch::addTriangle(uint32_t index0, uint32_t index1, uint32_t index2) { m_vecTriangleIndices.push_back(index0); m_vecTriangleIndices.push_back(index1); m_vecTriangleIndices.push_back(index2); if((m_vecVertices[index0].material == m_vecVertices[index1].material) && (m_vecVertices[index0].material == m_vecVertices[index2].material)) { m_mapUsedMaterials.insert(m_vecVertices[index0].material); } else { m_vecVertices[index0].m_bIsMaterialEdgeVertex = true; m_vecVertices[index1].m_bIsMaterialEdgeVertex = true; m_vecVertices[index2].m_bIsMaterialEdgeVertex = true; } } uint32_t IndexedSurfacePatch::addVertex(const SurfaceVertex& vertex) { m_vecVertices.push_back(vertex); return m_vecVertices.size() - 1; } void IndexedSurfacePatch::clear(void) { m_vecVertices.clear(); m_vecTriangleIndices.clear(); } const bool IndexedSurfacePatch::isEmpty(void) const { return (getNoOfVertices() == 0) || (getNoOfIndices() == 0); } //////////////////////////////////////////////////////////////////////////////// /// The function works on a per triangle basis without any need for connectivity /// information. It determines whether a triangle is lying on a flat or curved /// section of the surface patch by examining the normals - therefore these /// normals must hve been set to something sensible before this functions is called. /// \param fAmount A factor controlling how much the vertices move by. Find a good /// value by experimentation, starting with something small such as 0.1f. /// \param bIncludeEdgeVertices Indicates whether vertices on the edge of an /// IndexedSurfacePatch should be smoothed. This can cause dicontinuities between /// neighbouring patches. //////////////////////////////////////////////////////////////////////////////// void IndexedSurfacePatch::smoothPositions(float fAmount, bool bIncludeEdgeVertices) { if(m_vecVertices.size() == 0) //FIXME - I don't think we should need this test, but I have seen crashes otherwise... { return; } //This will hold the new positions, and is initialised with the current positions. std::vector newPositions(m_vecVertices.size()); for(uint32_t uIndex = 0; uIndex < newPositions.size(); uIndex++) { newPositions[uIndex] = m_vecVertices[uIndex].getPosition(); } //Iterate over each triangle for(vector::iterator iterIndex = m_vecTriangleIndices.begin(); iterIndex != m_vecTriangleIndices.end();) { //Get the vertex data for the triangle SurfaceVertex& v0 = m_vecVertices[*iterIndex]; Vector3DFloat& v0New = newPositions[*iterIndex]; iterIndex++; SurfaceVertex& v1 = m_vecVertices[*iterIndex]; Vector3DFloat& v1New = newPositions[*iterIndex]; iterIndex++; SurfaceVertex& v2 = m_vecVertices[*iterIndex]; Vector3DFloat& v2New = newPositions[*iterIndex]; iterIndex++; //Find the midpoint Vector3DFloat v3dMidpoint = (v0.position + v1.position + v2.position) / 3.0f; //Vectors from vertex to midpoint Vector3DFloat v0ToMidpoint = v3dMidpoint - v0.position; Vector3DFloat v1ToMidpoint = v3dMidpoint - v1.position; Vector3DFloat v2ToMidpoint = v3dMidpoint - v2.position; //Get the vertex normals Vector3DFloat n0 = v0.getNormal(); Vector3DFloat n1 = v1.getNormal(); Vector3DFloat n2 = v2.getNormal(); //I don't think these normalisation are necessary... and could be slow. //Normals should be normalised anyway, and as long as all triangles are //about the same size the distances to midpoint should be similar too. //v0ToMidpoint.normalise(); //v1ToMidpoint.normalise(); //v2ToMidpoint.normalise(); //n0.normalise(); //n1.normalise(); //n2.normalise(); //If the dot product is zero the the normals are perpendicular //to the triangle, hence the positions do not move. v0New += (n0 * (n0.dot(v0ToMidpoint)) * fAmount); v1New += (n1 * (n1.dot(v1ToMidpoint)) * fAmount); v2New += (n2 * (n2.dot(v2ToMidpoint)) * fAmount); } //Update with the new positions for(uint32_t uIndex = 0; uIndex < newPositions.size(); uIndex++) { if((bIncludeEdgeVertices) || (m_vecVertices[uIndex].isEdgeVertex() == false)) { m_vecVertices[uIndex].setPosition(newPositions[uIndex]); } } } //////////////////////////////////////////////////////////////////////////////// /// This function can help improve the visual appearance of a surface patch by /// smoothing normals with other nearby normals. It iterates over each triangle /// in the surface patch and determines the sum of its corners normals. For any /// given vertex, these sums are in turn summed for any triangles which use the /// vertex. Usually, the resulting normals should be renormalised afterwards. /// Note: This function can cause lighting discontinuities accross region boundaries. //////////////////////////////////////////////////////////////////////////////// void IndexedSurfacePatch::sumNearbyNormals(bool bNormaliseResult) { if(m_vecVertices.size() == 0) //FIXME - I don't think we should need this test, but I have seen crashes otherwise... { return; } std::vector summedNormals(m_vecVertices.size()); //Initialise all normals to zero. Should be ok as the vector should store all elements contiguously. memset(&summedNormals[0], 0, summedNormals.size() * sizeof(Vector3DFloat)); for(vector::iterator iterIndex = m_vecTriangleIndices.begin(); iterIndex != m_vecTriangleIndices.end();) { SurfaceVertex& v0 = m_vecVertices[*iterIndex]; Vector3DFloat& v0New = summedNormals[*iterIndex]; iterIndex++; SurfaceVertex& v1 = m_vecVertices[*iterIndex]; Vector3DFloat& v1New = summedNormals[*iterIndex]; iterIndex++; SurfaceVertex& v2 = m_vecVertices[*iterIndex]; Vector3DFloat& v2New = summedNormals[*iterIndex]; iterIndex++; Vector3DFloat sumOfNormals = v0.getNormal() + v1.getNormal() + v2.getNormal(); v0New += sumOfNormals; v1New += sumOfNormals; v2New += sumOfNormals; } for(uint32_t uIndex = 0; uIndex < summedNormals.size(); uIndex++) { if(bNormaliseResult) { summedNormals[uIndex].normalise(); } m_vecVertices[uIndex].setNormal(summedNormals[uIndex]); } } void IndexedSurfacePatch::generateAveragedFaceNormals(bool bNormalise, bool bIncludeEdgeVertices) { Vector3DFloat offset = static_cast(m_Region.getLowerCorner()); //Initially zero the normals for(vector::iterator iterVertex = m_vecVertices.begin(); iterVertex != m_vecVertices.end(); iterVertex++) { if(m_Region.containsPoint(iterVertex->getPosition() + offset, 0.001)) { iterVertex->setNormal(Vector3DFloat(0.0f,0.0f,0.0f)); } } for(vector::iterator iterIndex = m_vecTriangleIndices.begin(); iterIndex != m_vecTriangleIndices.end();) { SurfaceVertex& v0 = m_vecVertices[*iterIndex]; iterIndex++; SurfaceVertex& v1 = m_vecVertices[*iterIndex]; iterIndex++; SurfaceVertex& v2 = m_vecVertices[*iterIndex]; iterIndex++; Vector3DFloat triangleNormal = (v1.getPosition()-v0.getPosition()).cross(v2.getPosition()-v0.getPosition()); if(m_Region.containsPoint(v0.getPosition() + offset, 0.001)) { v0.setNormal(v0.getNormal() + triangleNormal); } if(m_Region.containsPoint(v1.getPosition() + offset, 0.001)) { v1.setNormal(v1.getNormal() + triangleNormal); } if(m_Region.containsPoint(v2.getPosition() + offset, 0.001)) { v2.setNormal(v2.getNormal() + triangleNormal); } } if(bNormalise) { for(vector::iterator iterVertex = m_vecVertices.begin(); iterVertex != m_vecVertices.end(); iterVertex++) { Vector3DFloat normal = iterVertex->getNormal(); normal.normalise(); iterVertex->setNormal(normal); } } } POLYVOX_SHARED_PTR IndexedSurfacePatch::extractSubset(std::set setMaterials) { POLYVOX_SHARED_PTR result(new IndexedSurfacePatch); if(m_vecVertices.size() == 0) //FIXME - I don't think we should need this test, but I have seen crashes otherwise... { return result; } for(vector::iterator iterIndex = m_vecTriangleIndices.begin(); iterIndex != m_vecTriangleIndices.end();) { SurfaceVertex& v0 = m_vecVertices[*iterIndex]; iterIndex++; SurfaceVertex& v1 = m_vecVertices[*iterIndex]; iterIndex++; SurfaceVertex& v2 = m_vecVertices[*iterIndex]; iterIndex++; if( (setMaterials.find(v0.getMaterial()) != setMaterials.end()) || (setMaterials.find(v1.getMaterial()) != setMaterials.end()) || (setMaterials.find(v2.getMaterial()) != setMaterials.end())) { uint32_t i0 = result->addVertex(v0); uint32_t i1 = result->addVertex(v1); uint32_t i2 = result->addVertex(v2); result->addTriangle(i0,i1,i2); } } return result; } /*int IndexedSurfacePatch::countMaterialBoundary(void) { int count = 0; for(int ct = 0; ct < m_vecVertices.size(); ct++) { if(m_vecVertices[ct].m_bIsMaterialEdgeVertex) { count++; } } return count; } void IndexedSurfacePatch::growMaterialBoundary(void) { std::vector vecNewVertices = m_vecVertices; for(vector::iterator iterIndex = m_vecTriangleIndices.begin(); iterIndex != m_vecTriangleIndices.end();) { SurfaceVertex& v0 = m_vecVertices[*iterIndex]; SurfaceVertex& v0New = vecNewVertices[*iterIndex]; iterIndex++; SurfaceVertex& v1 = m_vecVertices[*iterIndex]; SurfaceVertex& v1New = vecNewVertices[*iterIndex]; iterIndex++; SurfaceVertex& v2 = m_vecVertices[*iterIndex]; SurfaceVertex& v2New = vecNewVertices[*iterIndex]; iterIndex++; if(v0.m_bIsMaterialEdgeVertex || v1.m_bIsMaterialEdgeVertex || v2.m_bIsMaterialEdgeVertex) { v0New.m_bIsMaterialEdgeVertex = true; v1New.m_bIsMaterialEdgeVertex = true; v2New.m_bIsMaterialEdgeVertex = true; } } m_vecVertices = vecNewVertices; }*/ void IndexedSurfacePatch::makeProgressiveMesh(void) { //Build the mesh using Stan Melax's code List vecList; for(int vertCt = 0; vertCt < m_vecVertices.size(); vertCt++) { VectorM vec; vec.x = m_vecVertices[vertCt].getPosition().getX(); vec.y = m_vecVertices[vertCt].getPosition().getY(); vec.z = m_vecVertices[vertCt].getPosition().getZ(); if(m_vecVertices[vertCt].isEdgeVertex() || m_vecVertices[vertCt].m_bIsMaterialEdgeVertex) { vec.fBoundaryCost = 1.0f; } else { vec.fBoundaryCost = 0.0f; } vecList.Add(vec); } List triList; for(int triCt = 0; triCt < m_vecTriangleIndices.size(); ) { tridata tri; tri.v[0] = m_vecTriangleIndices[triCt]; triCt++; tri.v[1] = m_vecTriangleIndices[triCt]; triCt++; tri.v[2] = m_vecTriangleIndices[triCt]; triCt++; triList.Add(tri); } List map; List permutation; ProgressiveMesh(vecList, triList, map, permutation); //Apply the permutation to our vertices std::vector vecNewVertices(m_vecVertices.size()); for(int vertCt = 0; vertCt < m_vecVertices.size(); vertCt++) { vecNewVertices[permutation[vertCt]]= m_vecVertices[vertCt]; } std::vector vecNewTriangleIndices(m_vecTriangleIndices.size()); for(int triCt = 0; triCt < m_vecTriangleIndices.size(); triCt++) { vecNewTriangleIndices[triCt] = permutation[m_vecTriangleIndices[triCt]]; } m_vecVertices = vecNewVertices; m_vecTriangleIndices = vecNewTriangleIndices; //////////////////////////////////////////////////////////////////////////////// //Check for unused vertices? //int usedVertices = 0; //int unusedVertices = 0; /*usedVertices = 0; unusedVertices = 0; for(int vertCt = 0; vertCt < isp->m_vecVertices.size(); vertCt++) { bool found = false; for(int triCt = 0; triCt < isp->m_vecTriangleIndices.size(); triCt++) { if(vertCt == isp->m_vecTriangleIndices[triCt]) { found = true; break; } } if(found) { usedVertices++; } else { unusedVertices++; } } std::cout << "Used = " << usedVertices << std::endl; std::cout << "Unused = " << unusedVertices << std::endl;*/ //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //switch triangle order? /*int noOfTriIndices = isp->m_vecTriangleIndices.size(); for(int triCt = 0; triCt < noOfTriIndices; triCt++) { vecNewTriangleIndices[(noOfTriIndices - 1) - triCt] = isp->m_vecTriangleIndices[triCt]; } isp->m_vecTriangleIndices = vecNewTriangleIndices;*/ //Now build the new index buffers std::vector vecNewTriangles; std::vector vecUnaffectedTriangles; std::vector vecCollapsedTriangles; vector vecCanCollapse(m_vecVertices.size()); for(int ct = 0; ct < vecCanCollapse.size(); ct++) { vecCanCollapse[ct] = true; } vector vecTriangleRemoved(m_vecTriangleIndices.size() / 3); for(int ct = 0; ct < vecTriangleRemoved.size(); ct++) { vecTriangleRemoved[ct] = false; } int noOfCollapsed = 0; m_vecLodRecords.clear(); for(int vertToCollapse = m_vecVertices.size() - 1; vertToCollapse > 0; vertToCollapse--) //int vertToCollapse = isp->m_vecVertices.size() - 1; { int vertCollapseTarget = map[vertToCollapse]; if((vecCanCollapse[vertToCollapse]) && (vecCanCollapse[vertCollapseTarget])) { int noOfNew = 0; for(int triCt = 0; triCt < m_vecTriangleIndices.size();) { int v0 = m_vecTriangleIndices[triCt]; triCt++; int v1 = m_vecTriangleIndices[triCt]; triCt++; int v2 = m_vecTriangleIndices[triCt]; triCt++; if(vecTriangleRemoved[(triCt - 3) / 3] == false) { if( (v0 == vertToCollapse) || (v1 == vertToCollapse) || (v2 == vertToCollapse) ) { vecCollapsedTriangles.push_back(v0); vecCollapsedTriangles.push_back(v1); vecCollapsedTriangles.push_back(v2); vecCanCollapse[v0] = false; vecCanCollapse[v1] = false; vecCanCollapse[v2] = false; noOfCollapsed++; int targetV0 = v0; int targetV1 = v1; int targetV2 = v2; if(targetV0 == vertToCollapse) targetV0 = vertCollapseTarget; if(targetV1 == vertToCollapse) targetV1 = vertCollapseTarget; if(targetV2 == vertToCollapse) targetV2 = vertCollapseTarget; if((targetV0 != targetV1) && (targetV1 != targetV2) && (targetV2 != targetV0)) { vecNewTriangles.push_back(targetV0); vecNewTriangles.push_back(targetV1); vecNewTriangles.push_back(targetV2); noOfNew++; vecCanCollapse[targetV0] = false; vecCanCollapse[targetV1] = false; vecCanCollapse[targetV2] = false; } vecTriangleRemoved[(triCt - 3) / 3] = true; } } } LodRecord lodRecord; lodRecord.beginIndex = vecNewTriangles.size() - (3 * noOfNew); lodRecord.endIndex = vecCollapsedTriangles.size(); m_vecLodRecords.push_back(lodRecord); } } //Copy triangles into unaffected list for(int triCt = 0; triCt < m_vecTriangleIndices.size();) { int v0 = m_vecTriangleIndices[triCt]; triCt++; int v1 = m_vecTriangleIndices[triCt]; triCt++; int v2 = m_vecTriangleIndices[triCt]; triCt++; if(vecTriangleRemoved[(triCt - 3) / 3] == false) { vecUnaffectedTriangles.push_back(v0); vecUnaffectedTriangles.push_back(v1); vecUnaffectedTriangles.push_back(v2); } } //Now copy the three lists of triangles back m_vecTriangleIndices.clear(); for(int ct = 0; ct < vecNewTriangles.size(); ct++) { m_vecTriangleIndices.push_back(vecNewTriangles[ct]); } for(int ct = 0; ct < vecUnaffectedTriangles.size(); ct++) { m_vecTriangleIndices.push_back(vecUnaffectedTriangles[ct]); } for(int ct = 0; ct < vecCollapsedTriangles.size(); ct++) { m_vecTriangleIndices.push_back(vecCollapsedTriangles[ct]); } //Adjust the lod records for(int ct = 0; ct < m_vecLodRecords.size(); ct++) { m_vecLodRecords[ct].endIndex += (vecNewTriangles.size() + vecUnaffectedTriangles.size()); } } }