/******************************************************************************* Copyright (c) 2005-2009 David Williams This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. *******************************************************************************/ #include namespace PolyVox { //////////////////////////////////////////////////////////////////////////////// /// Using this function, a voxel is considered valid for the path if it is inside the /// volume and if its density is below that returned by the voxel's getDensity() function. /// \return true is the voxel is valid for the path //////////////////////////////////////////////////////////////////////////////// template bool aStarDefaultVoxelValidator(const LargeVolume* volData, const Vector3DInt32& v3dPos) { //Voxels are considered valid candidates for the path if they are inside the volume... if(volData->getEnclosingRegion().containsPoint(v3dPos) == false) { return false; } //and if their density is below the threshold. Material8 voxel = volData->getVoxelAt(v3dPos); if(voxel.getDensity() >= Material8::getThreshold()) { return false; } return true; } //////////////////////////////////////////////////////////////////////////////// // AStarPathfinder Class //////////////////////////////////////////////////////////////////////////////// template AStarPathfinder::AStarPathfinder(const AStarPathfinderParams& params) :m_params(params) { } template void AStarPathfinder::execute() { //Clear any existing nodes allNodes.clear(); openNodes.clear(); closedNodes.clear(); //Clear the result m_params.result->clear(); //Iterators to start and end node. AllNodesContainer::iterator startNode = allNodes.insert(Node(m_params.start.getX(), m_params.start.getY(), m_params.start.getZ())).first; AllNodesContainer::iterator endNode = allNodes.insert(Node(m_params.end.getX(), m_params.end.getY(), m_params.end.getZ())).first; //Regarding the const_cast - normally you should not modify an object which is in an sdt::set. //The reason is that objects in a set are stored sorted in a tree so they can be accessed quickly, //and changing the object directly can break the sorting. However, in our case we have provided a //custom sort operator for the set which we know only uses the position to sort. Hence we can safely //modify other properties of the object while it is in the set. Node* tempStart = const_cast(&(*startNode)); tempStart->gVal = 0; tempStart->hVal = computeH(startNode->position, endNode->position); Node* tempEnd = const_cast(&(*endNode)); tempEnd->hVal = 0.0f; openNodes.insert(startNode); float fDistStartToEnd = (endNode->position - startNode->position).length(); m_fProgress = 0.0f; if(m_params.progressCallback) { m_params.progressCallback(m_fProgress); } while((openNodes.empty() == false) && (openNodes.getFirst() != endNode)) { //Move the first node from open to closed. current = openNodes.getFirst(); openNodes.removeFirst(); closedNodes.insert(current); //Update the user on our progress if(m_params.progressCallback) { const float fMinProgresIncreament = 0.001f; float fDistCurrentToEnd = (endNode->position - current->position).length(); float fDistNormalised = fDistCurrentToEnd / fDistStartToEnd; float fProgress = 1.0f - fDistNormalised; if(fProgress >= m_fProgress + fMinProgresIncreament) { m_fProgress = fProgress; m_params.progressCallback(m_fProgress); } } //The distance from one cell to another connected by face, edge, or corner. const float fFaceCost = sqrt_1; const float fEdgeCost = sqrt_2; const float fCornerCost = sqrt_3; //Process the neighbours. Note the deliberate lack of 'break' //statements, larger connectivities include smaller ones. switch(m_params.connectivity) { case TwentySixConnected: processNeighbour(current->position + arrayPathfinderCorners[0], current->gVal + fCornerCost); processNeighbour(current->position + arrayPathfinderCorners[1], current->gVal + fCornerCost); processNeighbour(current->position + arrayPathfinderCorners[2], current->gVal + fCornerCost); processNeighbour(current->position + arrayPathfinderCorners[3], current->gVal + fCornerCost); processNeighbour(current->position + arrayPathfinderCorners[4], current->gVal + fCornerCost); processNeighbour(current->position + arrayPathfinderCorners[5], current->gVal + fCornerCost); processNeighbour(current->position + arrayPathfinderCorners[6], current->gVal + fCornerCost); processNeighbour(current->position + arrayPathfinderCorners[7], current->gVal + fCornerCost); case EighteenConnected: processNeighbour(current->position + arrayPathfinderEdges[ 0], current->gVal + fEdgeCost); processNeighbour(current->position + arrayPathfinderEdges[ 1], current->gVal + fEdgeCost); processNeighbour(current->position + arrayPathfinderEdges[ 2], current->gVal + fEdgeCost); processNeighbour(current->position + arrayPathfinderEdges[ 3], current->gVal + fEdgeCost); processNeighbour(current->position + arrayPathfinderEdges[ 4], current->gVal + fEdgeCost); processNeighbour(current->position + arrayPathfinderEdges[ 5], current->gVal + fEdgeCost); processNeighbour(current->position + arrayPathfinderEdges[ 6], current->gVal + fEdgeCost); processNeighbour(current->position + arrayPathfinderEdges[ 7], current->gVal + fEdgeCost); processNeighbour(current->position + arrayPathfinderEdges[ 8], current->gVal + fEdgeCost); processNeighbour(current->position + arrayPathfinderEdges[ 9], current->gVal + fEdgeCost); processNeighbour(current->position + arrayPathfinderEdges[10], current->gVal + fEdgeCost); processNeighbour(current->position + arrayPathfinderEdges[11], current->gVal + fEdgeCost); case SixConnected: processNeighbour(current->position + arrayPathfinderFaces[0], current->gVal + fFaceCost); processNeighbour(current->position + arrayPathfinderFaces[1], current->gVal + fFaceCost); processNeighbour(current->position + arrayPathfinderFaces[2], current->gVal + fFaceCost); processNeighbour(current->position + arrayPathfinderFaces[3], current->gVal + fFaceCost); processNeighbour(current->position + arrayPathfinderFaces[4], current->gVal + fFaceCost); processNeighbour(current->position + arrayPathfinderFaces[5], current->gVal + fFaceCost); } if(allNodes.size() > m_params.maxNumberOfNodes) { //We've reached the specified maximum number //of nodes. Just give up on the search. break; } } if((openNodes.empty()) || (openNodes.getFirst() != endNode)) { //In this case we failed to find a valid path. throw std::runtime_error("No path found"); } else { //Regarding the const_cast - normally you should not modify an object which is in an sdt::set. //The reason is that objects in a set are stored sorted in a tree so they can be accessed quickly, //and changing the object directly can break the sorting. However, in our case we have provided a //custom sort operator for the set which we know only uses the position to sort. Hence we can safely //modify other properties of the object while it is in the set. Node* n = const_cast(&(*endNode)); while(n != 0) { m_params.result->push_front(n->position); n = n->parent; } } if(m_params.progressCallback) { m_params.progressCallback(1.0f); } } template void AStarPathfinder::processNeighbour(const Vector3DInt32& neighbourPos, float neighbourGVal) { bool bIsVoxelValidForPath = m_params.isVoxelValidForPath(m_params.volume, neighbourPos); if(!bIsVoxelValidForPath) { return; } float cost = neighbourGVal; std::pair insertResult = allNodes.insert(Node(neighbourPos.getX(), neighbourPos.getY(), neighbourPos.getZ())); AllNodesContainer::iterator neighbour = insertResult.first; if(insertResult.second == true) //New node, compute h. { Node* tempNeighbour = const_cast(&(*neighbour)); tempNeighbour -> hVal = computeH(neighbour->position, m_params.end); } OpenNodesContainer::iterator openIter = openNodes.find(neighbour); if(openIter != openNodes.end()) { if(cost < neighbour->gVal) { openNodes.remove(openIter); openIter = openNodes.end(); } } //TODO - Nodes could keep track of if they are in open or closed? And a pointer to where they are? ClosedNodesContainer::iterator closedIter = closedNodes.find(neighbour); if(closedIter != closedNodes.end()) { if(cost < neighbour->gVal) { //Probably shouldn't happen? closedNodes.remove(closedIter); closedIter = closedNodes.end(); } } if((openIter == openNodes.end()) && (closedIter == closedNodes.end())) { //Regarding the const_cast - normally you should not modify an object which is in an sdt::set. //The reason is that objects in a set are stored sorted in a tree so they can be accessed quickly, //and changing the object directly can break the sorting. However, in our case we have provided a //custom sort operator for the set which we know only uses the position to sort. Hence we can safely //modify other properties of the object while it is in the set. Node* temp = const_cast(&(*neighbour)); temp->gVal = cost; openNodes.insert(neighbour); temp->parent = const_cast(&(*current)); } } template float AStarPathfinder::SixConnectedCost(const Vector3DInt32& a, const Vector3DInt32& b) { //This is the only heuristic I'm sure of - just use the manhatten distance for the 6-connected case. uint32_t faceSteps = abs(a.getX()-b.getX()) + abs(a.getY()-b.getY()) + abs(a.getZ()-b.getZ()); return faceSteps * 1.0f; } template float AStarPathfinder::EighteenConnectedCost(const Vector3DInt32& a, const Vector3DInt32& b) { //I'm not sure of the correct heuristic for the 18-connected case, so I'm just letting it fall through to the //6-connected case. This means 'h' will be bigger than it should be, resulting in a faster path which may not //actually be the shortest one. If you have a correct heuristic for the 18-connected case then please let me know. return SixConnectedCost(a,b); } template float AStarPathfinder::TwentySixConnectedCost(const Vector3DInt32& a, const Vector3DInt32& b) { //Can't say I'm certain about this heuristic - if anyone has //a better idea of what it should be then please let me know. uint32_t array[3]; array[0] = abs(a.getX() - b.getX()); array[1] = abs(a.getY() - b.getY()); array[2] = abs(a.getZ() - b.getZ()); //Maybe this is better implemented directly //using three compares and two swaps... but not //until the profiler says so. std::sort(&array[0], &array[3]); uint32_t cornerSteps = array[0]; uint32_t edgeSteps = array[1] - array[0]; uint32_t faceSteps = array[2] - array[1]; return cornerSteps * sqrt_3 + edgeSteps * sqrt_2 + faceSteps * sqrt_1; } template float AStarPathfinder::computeH(const Vector3DInt32& a, const Vector3DInt32& b) { float hVal; switch(m_params.connectivity) { case TwentySixConnected: hVal = TwentySixConnectedCost(a, b); break; case EighteenConnected: hVal = EighteenConnectedCost(a, b); break; case SixConnected: hVal = SixConnectedCost(a, b); break; default: assert(false); //Invalid case. } //Sanity checks in debug mode. These can come out eventually, but I //want to make sure that the heuristics I've come up with make sense. assert((a-b).length() <= TwentySixConnectedCost(a,b)); assert(TwentySixConnectedCost(a,b) <= EighteenConnectedCost(a,b)); assert(EighteenConnectedCost(a,b) <= SixConnectedCost(a,b)); //Apply the bias to the computed h value; hVal *= m_params.hBias; //Having computed hVal, we now apply some random bias to break ties. //This needs to be deterministic on the input position. This random //bias means it is much les likely that two paths are exactly the same //length, and so far fewer nodes must be expanded to find the shortest path. //See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#S12 polyvox_hash uint32Hash; uint32_t hashValX = uint32Hash(a.getX()); uint32_t hashValY = uint32Hash(a.getY()); uint32_t hashValZ = uint32Hash(a.getZ()); uint32_t hashVal = hashValX ^ hashValY ^ hashValZ; //Stop hashVal going over 65535, and divide by 1000000 to make sure it is small. hashVal &= 0x0000FFFF; float fHash = hashVal / 1000000.0f; //Apply the hash and return hVal += fHash; return hVal; } }