#include "SurfaceExtractorsDecimated.h" #include "BlockVolume.h" #include "GradientEstimators.h" #include "IndexedSurfacePatch.h" #include "MarchingCubesTables.h" #include "Region.h" #include "RegionGeometry.h" #include "VolumeChangeTracker.h" #include "BlockVolumeIterator.h" #include using namespace boost; namespace PolyVox { boost::uint32_t getDecimatedIndex(boost::uint32_t x, boost::uint32_t y) { return x + (y * (POLYVOX_REGION_SIDE_LENGTH+1)); } void generateDecimatedMeshDataForRegion(BlockVolume* volumeData, uint8_t uLevel, Region region, IndexedSurfacePatch* singleMaterialPatch) { singleMaterialPatch->m_vecVertices.clear(); singleMaterialPatch->m_vecTriangleIndices.clear(); //For edge indices boost::int32_t* vertexIndicesX0 = new boost::int32_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; boost::int32_t* vertexIndicesY0 = new boost::int32_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; boost::int32_t* vertexIndicesZ0 = new boost::int32_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; boost::int32_t* vertexIndicesX1 = new boost::int32_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; boost::int32_t* vertexIndicesY1 = new boost::int32_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; boost::int32_t* vertexIndicesZ1 = new boost::int32_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; //Cell bitmasks boost::uint8_t* bitmask0 = new boost::uint8_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; boost::uint8_t* bitmask1 = new boost::uint8_t[(POLYVOX_REGION_SIDE_LENGTH+1) * (POLYVOX_REGION_SIDE_LENGTH+1)]; const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel; //When generating the mesh for a region we actually look one voxel outside it in the // back, bottom, right direction. Protect against access violations by cropping region here Region regVolume = volumeData->getEnclosingRegion(); regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(uLevel+uStepSize,uLevel+uStepSize,uLevel+uStepSize)); region.cropTo(regVolume); //Offset from volume corner const Vector3DFloat offset = static_cast(region.getLowerCorner()); //Create a region corresponding to the first slice Region regSlice0(region); Vector3DInt32 v3dUpperCorner = regSlice0.getUpperCorner(); v3dUpperCorner.setZ(regSlice0.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick. regSlice0.setUpperCorner(v3dUpperCorner); //Iterator to access the volume data BlockVolumeIterator volIter(*volumeData); //Compute bitmask for initial slice boost::uint32_t uNoOfNonEmptyCellsForSlice0 = computeInitialDecimatedBitmaskForSlice(volIter, uLevel, regSlice0, offset, bitmask0); if(uNoOfNonEmptyCellsForSlice0 != 0) { //If there were some non-empty cells then generate initial slice vertices for them generateDecimatedVerticesForSlice(volIter, uLevel, regSlice0, offset, bitmask0, singleMaterialPatch, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0); } for(boost::uint32_t uSlice = 0; ((uSlice <= POLYVOX_REGION_SIDE_LENGTH-1) && (uSlice + offset.getZ() < region.getUpperCorner().getZ())); uSlice += uStepSize) { Region regSlice1(regSlice0); regSlice1.shift(Vector3DInt32(0,0,uStepSize)); boost::uint32_t uNoOfNonEmptyCellsForSlice1 = computeDecimatedBitmaskForSliceFromPrevious(volIter, uLevel, regSlice1, offset, bitmask1, bitmask0); if(uNoOfNonEmptyCellsForSlice1 != 0) { generateDecimatedVerticesForSlice(volIter, uLevel, regSlice1, offset, bitmask1, singleMaterialPatch, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1); } if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0)) { generateDecimatedIndicesForSlice(volIter, uLevel, regSlice0, singleMaterialPatch, offset, bitmask0, bitmask1, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1); } std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1); std::swap(bitmask0, bitmask1); std::swap(vertexIndicesX0, vertexIndicesX1); std::swap(vertexIndicesY0, vertexIndicesY1); std::swap(vertexIndicesZ0, vertexIndicesZ1); regSlice0 = regSlice1; } delete[] bitmask0; delete[] bitmask1; delete[] vertexIndicesX0; delete[] vertexIndicesX1; delete[] vertexIndicesY0; delete[] vertexIndicesY1; delete[] vertexIndicesZ0; delete[] vertexIndicesZ1; /*std::vector::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != singleMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeDecimatedNormal(volumeData, static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; }*/ } boost::uint32_t computeInitialDecimatedBitmaskForSlice(BlockVolumeIterator& volIter, uint8_t uLevel, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask) { const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel; boost::uint32_t uNoOfNonEmptyCells = 0; //Iterate over each cell in the region for(uint16_t y = regSlice.getLowerCorner().getY(); y <= regSlice.getUpperCorner().getY(); y += uStepSize) { for(uint16_t x = regSlice.getLowerCorner().getX(); x <= regSlice.getUpperCorner().getX(); x += uStepSize) { //Current position volIter.setPosition(x,y,regSlice.getLowerCorner().getZ()); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if((x==regSlice.getLowerCorner().getX()) && (y==regSlice.getLowerCorner().getY())) { volIter.setPosition(x,y,regSlice.getLowerCorner().getZ()); const uint8_t v000 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y,regSlice.getLowerCorner().getZ()); const uint8_t v100 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x,y+uStepSize,regSlice.getLowerCorner().getZ()); const uint8_t v010 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()); const uint8_t v110 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x,y,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v001 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v101 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v011 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getMaxedVoxel(1); if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else if((x>regSlice.getLowerCorner().getX()) && y==regSlice.getLowerCorner().getY()) { volIter.setPosition(x+uStepSize,y,regSlice.getLowerCorner().getZ()); const uint8_t v100 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()); const uint8_t v110 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v101 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getMaxedVoxel(uLevel); //x uint8_t iPreviousCubeIndexX = bitmask[getDecimatedIndex(x- offset.getX()-uStepSize,y- offset.getY())]; uint8_t srcBit6 = iPreviousCubeIndexX & 64; uint8_t destBit7 = srcBit6 << 1; uint8_t srcBit5 = iPreviousCubeIndexX & 32; uint8_t destBit4 = srcBit5 >> 1; uint8_t srcBit2 = iPreviousCubeIndexX & 4; uint8_t destBit3 = srcBit2 << 1; uint8_t srcBit1 = iPreviousCubeIndexX & 2; uint8_t destBit0 = srcBit1 >> 1; iCubeIndex |= destBit0; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; iCubeIndex |= destBit3; iCubeIndex |= destBit4; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } else if((x==regSlice.getLowerCorner().getX()) && (y>regSlice.getLowerCorner().getY())) { volIter.setPosition(x,y+uStepSize,regSlice.getLowerCorner().getZ()); const uint8_t v010 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()); const uint8_t v110 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v011 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getMaxedVoxel(uLevel); //y uint8_t iPreviousCubeIndexY = bitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY()-uStepSize)]; uint8_t srcBit7 = iPreviousCubeIndexY & 128; uint8_t destBit4 = srcBit7 >> 3; uint8_t srcBit6 = iPreviousCubeIndexY & 64; uint8_t destBit5 = srcBit6 >> 1; uint8_t srcBit3 = iPreviousCubeIndexY & 8; uint8_t destBit0 = srcBit3 >> 3; uint8_t srcBit2 = iPreviousCubeIndexY & 4; uint8_t destBit1 = srcBit2 >> 1; iCubeIndex |= destBit0; iCubeIndex |= destBit1; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else { volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()); const uint8_t v110 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getMaxedVoxel(uLevel); //y uint8_t iPreviousCubeIndexY = bitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY()-uStepSize)]; uint8_t srcBit7 = iPreviousCubeIndexY & 128; uint8_t destBit4 = srcBit7 >> 3; uint8_t srcBit6 = iPreviousCubeIndexY & 64; uint8_t destBit5 = srcBit6 >> 1; uint8_t srcBit3 = iPreviousCubeIndexY & 8; uint8_t destBit0 = srcBit3 >> 3; uint8_t srcBit2 = iPreviousCubeIndexY & 4; uint8_t destBit1 = srcBit2 >> 1; //x uint8_t iPreviousCubeIndexX = bitmask[getDecimatedIndex(x- offset.getX()-uStepSize,y- offset.getY())]; srcBit6 = iPreviousCubeIndexX & 64; uint8_t destBit7 = srcBit6 << 1; srcBit2 = iPreviousCubeIndexX & 4; uint8_t destBit3 = srcBit2 << 1; iCubeIndex |= destBit0; iCubeIndex |= destBit1; if (v110 == 0) iCubeIndex |= 4; iCubeIndex |= destBit3; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } //Save the bitmask bitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY())] = iCubeIndex; if(edgeTable[iCubeIndex] != 0) { ++uNoOfNonEmptyCells; } } } return uNoOfNonEmptyCells; } boost::uint32_t computeDecimatedBitmaskForSliceFromPrevious(BlockVolumeIterator& volIter, uint8_t uLevel, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, uint8_t* previousBitmask) { const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel; boost::uint32_t uNoOfNonEmptyCells = 0; //Iterate over each cell in the region for(uint16_t y = regSlice.getLowerCorner().getY(); y <= regSlice.getUpperCorner().getY(); y += uStepSize) { for(uint16_t x = regSlice.getLowerCorner().getX(); x <= regSlice.getUpperCorner().getX(); x += uStepSize) { //Current position volIter.setPosition(x,y,regSlice.getLowerCorner().getZ()); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if((x==regSlice.getLowerCorner().getX()) && (y==regSlice.getLowerCorner().getY())) { volIter.setPosition(x,y,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v001 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v101 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v011 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getMaxedVoxel(uLevel); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY())]; iCubeIndex = iPreviousCubeIndexZ >> 4; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else if((x>regSlice.getLowerCorner().getX()) && y==regSlice.getLowerCorner().getY()) { volIter.setPosition(x+uStepSize,y,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v101 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getMaxedVoxel(uLevel); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY())]; iCubeIndex = iPreviousCubeIndexZ >> 4; //x uint8_t iPreviousCubeIndexX = bitmask[getDecimatedIndex(x- offset.getX()-uStepSize,y- offset.getY())]; uint8_t srcBit6 = iPreviousCubeIndexX & 64; uint8_t destBit7 = srcBit6 << 1; uint8_t srcBit5 = iPreviousCubeIndexX & 32; uint8_t destBit4 = srcBit5 >> 1; iCubeIndex |= destBit4; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } else if((x==regSlice.getLowerCorner().getX()) && (y>regSlice.getLowerCorner().getY())) { volIter.setPosition(x,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v011 = volIter.getMaxedVoxel(uLevel); volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getMaxedVoxel(uLevel); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY())]; iCubeIndex = iPreviousCubeIndexZ >> 4; //y uint8_t iPreviousCubeIndexY = bitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY()-uStepSize)]; uint8_t srcBit7 = iPreviousCubeIndexY & 128; uint8_t destBit4 = srcBit7 >> 3; uint8_t srcBit6 = iPreviousCubeIndexY & 64; uint8_t destBit5 = srcBit6 >> 1; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; } else { volIter.setPosition(x+uStepSize,y+uStepSize,regSlice.getLowerCorner().getZ()+uStepSize); const uint8_t v111 = volIter.getMaxedVoxel(uLevel); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY())]; iCubeIndex = iPreviousCubeIndexZ >> 4; //y uint8_t iPreviousCubeIndexY = bitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY()-uStepSize)]; uint8_t srcBit7 = iPreviousCubeIndexY & 128; uint8_t destBit4 = srcBit7 >> 3; uint8_t srcBit6 = iPreviousCubeIndexY & 64; uint8_t destBit5 = srcBit6 >> 1; //x uint8_t iPreviousCubeIndexX = bitmask[getDecimatedIndex(x- offset.getX()-uStepSize,y- offset.getY())]; srcBit6 = iPreviousCubeIndexX & 64; uint8_t destBit7 = srcBit6 << 1; iCubeIndex |= destBit4; iCubeIndex |= destBit5; if (v111 == 0) iCubeIndex |= 64; iCubeIndex |= destBit7; } //Save the bitmask bitmask[getDecimatedIndex(x- offset.getX(),y- offset.getY())] = iCubeIndex; if(edgeTable[iCubeIndex] != 0) { ++uNoOfNonEmptyCells; } }//For each cell } return uNoOfNonEmptyCells; } void generateDecimatedVerticesForSlice(BlockVolumeIterator& volIter, uint8_t uLevel, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,boost::int32_t vertexIndicesX[],boost::int32_t vertexIndicesY[],boost::int32_t vertexIndicesZ[]) { const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel; //Iterate over each cell in the region for(uint16_t y = regSlice.getLowerCorner().getY(); y <= regSlice.getUpperCorner().getY(); y += uStepSize) { for(uint16_t x = regSlice.getLowerCorner().getX(); x <= regSlice.getUpperCorner().getX(); x += uStepSize) { //Current position const uint16_t z = regSlice.getLowerCorner().getZ(); volIter.setPosition(x,y,z); const uint8_t v000 = volIter.getMaxedVoxel(uLevel); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = bitmask[getDecimatedIndex(x - offset.getX(),y - offset.getY())]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { if(x != regSlice.getUpperCorner().getX()) { const Vector3DFloat v3dPosition(x - offset.getX() + 0.5f * uStepSize, y - offset.getY(), z - offset.getZ()); const Vector3DFloat v3dNormal(1.0,0.0,0.0); volIter.setPosition(x+uStepSize,y,z); const uint8_t uMaterial = v000 | volIter.getMaxedVoxel(uLevel); //Because one of these is 0, the or operation takes the max. SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial, 1.0); singleMaterialPatch->m_vecVertices.push_back(surfaceVertex); vertexIndicesX[getDecimatedIndex(x - offset.getX(),y - offset.getY())] = singleMaterialPatch->m_vecVertices.size()-1; } } if (edgeTable[iCubeIndex] & 8) { if(y != regSlice.getUpperCorner().getY()) { const Vector3DFloat v3dPosition(x - offset.getX(), y - offset.getY() + 0.5f * uStepSize, z - offset.getZ()); const Vector3DFloat v3dNormal(0.0,1.0,0.0); volIter.setPosition(x,y+uStepSize,z); const uint8_t uMaterial = v000 | volIter.getMaxedVoxel(uLevel); //Because one of these is 0, the or operation takes the max. SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial, 1.0); singleMaterialPatch->m_vecVertices.push_back(surfaceVertex); vertexIndicesY[getDecimatedIndex(x - offset.getX(),y - offset.getY())] = singleMaterialPatch->m_vecVertices.size()-1; } } if (edgeTable[iCubeIndex] & 256) { //if(z != regSlice.getUpperCorner.getZ()) { const Vector3DFloat v3dPosition(x - offset.getX(), y - offset.getY(), z - offset.getZ() + 0.5f * uStepSize); const Vector3DFloat v3dNormal(0.0,0.0,1.0); volIter.setPosition(x,y,z+uStepSize); const uint8_t uMaterial = v000 | volIter.getMaxedVoxel(uLevel); //Because one of these is 0, the or operation takes the max. const SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial, 1.0); singleMaterialPatch->m_vecVertices.push_back(surfaceVertex); vertexIndicesZ[getDecimatedIndex(x - offset.getX(),y - offset.getY())] = singleMaterialPatch->m_vecVertices.size()-1; } } }//For each cell } } void generateDecimatedIndicesForSlice(BlockVolumeIterator& volIter, uint8_t uLevel, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8_t* bitmask0, uint8_t* bitmask1, boost::int32_t vertexIndicesX0[],boost::int32_t vertexIndicesY0[],boost::int32_t vertexIndicesZ0[], boost::int32_t vertexIndicesX1[],boost::int32_t vertexIndicesY1[],boost::int32_t vertexIndicesZ1[]) { const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel; boost::uint32_t indlist[12]; for(uint16_t y = regSlice.getLowerCorner().getY() - offset.getY(); y < regSlice.getUpperCorner().getY() - offset.getY(); y += uStepSize) { for(uint16_t x = regSlice.getLowerCorner().getX() - offset.getX(); x < regSlice.getUpperCorner().getX() - offset.getX(); x += uStepSize) { //Current position const uint16_t z = regSlice.getLowerCorner().getZ() - offset.getZ(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = bitmask0[getDecimatedIndex(x,y)]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { indlist[0] = vertexIndicesX0[getDecimatedIndex(x,y)]; assert(indlist[0] != -1); } if (edgeTable[iCubeIndex] & 2) { indlist[1] = vertexIndicesY0[getDecimatedIndex(x+uStepSize,y)]; assert(indlist[1] != -1); } if (edgeTable[iCubeIndex] & 4) { indlist[2] = vertexIndicesX0[getDecimatedIndex(x,y+uStepSize)]; assert(indlist[2] != -1); } if (edgeTable[iCubeIndex] & 8) { indlist[3] = vertexIndicesY0[getDecimatedIndex(x,y)]; assert(indlist[3] != -1); } if (edgeTable[iCubeIndex] & 16) { indlist[4] = vertexIndicesX1[getDecimatedIndex(x,y)]; assert(indlist[4] != -1); } if (edgeTable[iCubeIndex] & 32) { indlist[5] = vertexIndicesY1[getDecimatedIndex(x+uStepSize,y)]; assert(indlist[5] != -1); } if (edgeTable[iCubeIndex] & 64) { indlist[6] = vertexIndicesX1[getDecimatedIndex(x,y+uStepSize)]; assert(indlist[6] != -1); } if (edgeTable[iCubeIndex] & 128) { indlist[7] = vertexIndicesY1[getDecimatedIndex(x,y)]; assert(indlist[7] != -1); } if (edgeTable[iCubeIndex] & 256) { indlist[8] = vertexIndicesZ0[getDecimatedIndex(x,y)]; assert(indlist[8] != -1); } if (edgeTable[iCubeIndex] & 512) { indlist[9] = vertexIndicesZ0[getDecimatedIndex(x+uStepSize,y)]; assert(indlist[9] != -1); } if (edgeTable[iCubeIndex] & 1024) { indlist[10] = vertexIndicesZ0[getDecimatedIndex(x+uStepSize,y+uStepSize)]; assert(indlist[10] != -1); } if (edgeTable[iCubeIndex] & 2048) { indlist[11] = vertexIndicesZ0[getDecimatedIndex(x,y+uStepSize)]; assert(indlist[11] != -1); } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { boost::uint32_t ind0 = indlist[triTable[iCubeIndex][i ]]; boost::uint32_t ind1 = indlist[triTable[iCubeIndex][i+1]]; boost::uint32_t ind2 = indlist[triTable[iCubeIndex][i+2]]; singleMaterialPatch->m_vecTriangleIndices.push_back(ind0); singleMaterialPatch->m_vecTriangleIndices.push_back(ind1); singleMaterialPatch->m_vecTriangleIndices.push_back(ind2); }//For each triangle }//For each cell } } void generateDecimatedMeshDataForRegionSlow(BlockVolume* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch) { //When generating the mesh for a region we actually look one voxel outside it in the // back, bottom, right direction. Protect against access violations by cropping region here Region regVolume = volumeData->getEnclosingRegion(); //regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(1,1,1)); region.cropTo(regVolume); region.setUpperCorner(region.getUpperCorner() - Vector3DInt32(1,1,1)); //Offset from lower block corner const Vector3DFloat offset = static_cast(region.getLowerCorner()); Vector3DFloat vertlist[12]; Vector3DFloat normlist[12]; uint8_t vertMaterials[12]; BlockVolumeIterator volIter(*volumeData); volIter.setValidRegion(region); ////////////////////////////////////////////////////////////////////////// //Get mesh data ////////////////////////////////////////////////////////////////////////// //Iterate over each cell in the region //volIter.setPosition(region.getLowerCorner().getX(),region.getLowerCorner().getY(), region.getLowerCorner().getZ()); for(uint16_t z = region.getLowerCorner().getZ(); z <= region.getUpperCorner().getZ(); z += 2) { for(uint16_t y = region.getLowerCorner().getY(); y <= region.getUpperCorner().getY(); y += 2) { for(uint16_t x = region.getLowerCorner().getX(); x <= region.getUpperCorner().getX(); x += 2) { //while(volIter.moveForwardInRegionXYZ()) //{ volIter.setPosition(x,y,z); const uint8_t v000 = volIter.getMaxedVoxel(1); volIter.setPosition(x+2,y,z); const uint8_t v100 = volIter.getMaxedVoxel(1); volIter.setPosition(x,y+2,z); const uint8_t v010 = volIter.getMaxedVoxel(1); volIter.setPosition(x+2,y+2,z); const uint8_t v110 = volIter.getMaxedVoxel(1); volIter.setPosition(x,y,z+2); const uint8_t v001 = volIter.getMaxedVoxel(1); volIter.setPosition(x+2,y,z+2); const uint8_t v101 = volIter.getMaxedVoxel(1); volIter.setPosition(x,y+2,z+2); const uint8_t v011 = volIter.getMaxedVoxel(1); volIter.setPosition(x+2,y+2,z+2); const uint8_t v111 = volIter.getMaxedVoxel(1); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { vertlist[0].setX(x + 0.5f * 2.0f); vertlist[0].setY(y); vertlist[0].setZ(z); normlist[0] = Vector3DFloat(v000 - v100,0.0,0.0); vertMaterials[0] = v000 | v100; //Because one of these is 0, the or operation takes the max. } if (edgeTable[iCubeIndex] & 2) { vertlist[1].setX(x + 1.0f * 2.0f); vertlist[1].setY(y + 0.5f * 2.0f); vertlist[1].setZ(z); vertMaterials[1] = v100 | v110; normlist[1] = Vector3DFloat(0.0,v100 - v110,0.0); } if (edgeTable[iCubeIndex] & 4) { vertlist[2].setX(x + 0.5f * 2.0f); vertlist[2].setY(y + 1.0f * 2.0f); vertlist[2].setZ(z); vertMaterials[2] = v010 | v110; normlist[2] = Vector3DFloat(v010 - v110,0.0,0.0); } if (edgeTable[iCubeIndex] & 8) { vertlist[3].setX(x); vertlist[3].setY(y + 0.5f * 2.0f); vertlist[3].setZ(z); vertMaterials[3] = v000 | v010; normlist[3] = Vector3DFloat(0.0,v000 - v010,0.0); } if (edgeTable[iCubeIndex] & 16) { vertlist[4].setX(x + 0.5f * 2.0f); vertlist[4].setY(y); vertlist[4].setZ(z + 1.0f * 2.0f); vertMaterials[4] = v001 | v101; normlist[4] = Vector3DFloat(v001 - v101,0.0,0.0); } if (edgeTable[iCubeIndex] & 32) { vertlist[5].setX(x + 1.0f * 2.0f); vertlist[5].setY(y + 0.5f * 2.0f); vertlist[5].setZ(z + 1.0f * 2.0f); vertMaterials[5] = v101 | v111; normlist[5] = Vector3DFloat(0.0,v101 - v111,0.0); } if (edgeTable[iCubeIndex] & 64) { vertlist[6].setX(x + 0.5f * 2.0f); vertlist[6].setY(y + 1.0f * 2.0f); vertlist[6].setZ(z + 1.0f * 2.0f); vertMaterials[6] = v011 | v111; normlist[6] = Vector3DFloat(v011 - v111,0.0,0.0); } if (edgeTable[iCubeIndex] & 128) { vertlist[7].setX(x); vertlist[7].setY(y + 0.5f * 2.0f); vertlist[7].setZ(z + 1.0f * 2.0f); vertMaterials[7] = v001 | v011; normlist[7] = Vector3DFloat(0.0,v001 - v011,0.0); } if (edgeTable[iCubeIndex] & 256) { vertlist[8].setX(x); vertlist[8].setY(y); vertlist[8].setZ(z + 0.5f * 2.0f); vertMaterials[8] = v000 | v001; normlist[8] = Vector3DFloat(0.0,0.0,v000 - v001); } if (edgeTable[iCubeIndex] & 512) { vertlist[9].setX(x + 1.0f * 2.0f); vertlist[9].setY(y); vertlist[9].setZ(z + 0.5f * 2.0f); vertMaterials[9] = v100 | v101; normlist[9] = Vector3DFloat(0.0,0.0,v100 - v101); } if (edgeTable[iCubeIndex] & 1024) { vertlist[10].setX(x + 1.0f * 2.0f); vertlist[10].setY(y + 1.0f * 2.0f); vertlist[10].setZ(z + 0.5f * 2.0f); vertMaterials[10] = v110 | v111; normlist[10] = Vector3DFloat(0.0,0.0,v110 - v111); } if (edgeTable[iCubeIndex] & 2048) { vertlist[11].setX(x); vertlist[11].setY(y + 1.0f * 2.0f); vertlist[11].setZ(z + 0.5f * 2.0f); vertMaterials[11] = v010 | v011; normlist[11] = Vector3DFloat(0.0,0.0,v010 - v011); } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { //The three vertices forming a triangle Vector3DFloat vertex0 = vertlist[triTable[iCubeIndex][i ]] - offset; Vector3DFloat vertex1 = vertlist[triTable[iCubeIndex][i+1]] - offset; Vector3DFloat vertex2 = vertlist[triTable[iCubeIndex][i+2]] - offset; Vector3DFloat normal0 = normlist[triTable[iCubeIndex][i ]]; Vector3DFloat normal1 = normlist[triTable[iCubeIndex][i+1]]; Vector3DFloat normal2 = normlist[triTable[iCubeIndex][i+2]]; normal0.normalise(); normal1.normalise(); normal2.normalise(); vertex0 += (normal0); vertex1 += (normal1); vertex2 += (normal2); //Cast to floats and divide by two. //const Vector3DFloat vertex0AsFloat = (static_cast(vertex0) / 2.0f) - offset; //const Vector3DFloat vertex1AsFloat = (static_cast(vertex1) / 2.0f) - offset; //const Vector3DFloat vertex2AsFloat = (static_cast(vertex2) / 2.0f) - offset; const uint8_t material0 = vertMaterials[triTable[iCubeIndex][i ]]; const uint8_t material1 = vertMaterials[triTable[iCubeIndex][i+1]]; const uint8_t material2 = vertMaterials[triTable[iCubeIndex][i+2]]; //If all the materials are the same, we just need one triangle for that material with all the alphas set high. SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); surfaceVertex0Alpha1.setNormal(normal0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); surfaceVertex1Alpha1.setNormal(normal1); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f); surfaceVertex2Alpha1.setNormal(normal2); singleMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); }//For each triangle //}//For each cell } } } //FIXME - can it happen that we have no vertices or triangles? Should exit early? //for(std::map::iterator iterPatch = surfacePatchMapResult.begin(); iterPatch != surfacePatchMapResult.end(); ++iterPatch) { /*std::vector::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != singleMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeNormal(volumeData, static_cast(iterSurfaceVertex->getPosition() + offset), SIMPLE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; }*/ } } Vector3DFloat computeDecimatedNormal(BlockVolume* volumeData, const Vector3DFloat& position, NormalGenerationMethod normalGenerationMethod) { const float posX = position.getX(); const float posY = position.getY(); const float posZ = position.getZ(); const uint16_t floorX = static_cast(posX); const uint16_t floorY = static_cast(posY); const uint16_t floorZ = static_cast(posZ); //Check all corners are within the volume, allowing a boundary for gradient estimation bool lowerCornerInside = volumeData->containsPoint(Vector3DInt32(floorX, floorY, floorZ),1); bool upperCornerInside = volumeData->containsPoint(Vector3DInt32(floorX+1, floorY+1, floorZ+1),1); if((!lowerCornerInside) || (!upperCornerInside)) { normalGenerationMethod = SIMPLE; } Vector3DFloat result; BlockVolumeIterator volIter(*volumeData); //FIXME - save this somewhere - could be expensive to create? if(normalGenerationMethod == SOBEL) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeSobelGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeSobelGradient(volIter); result = ((gradFloor + gradCeil) * -1.0f); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == CENTRAL_DIFFERENCE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeCentralDifferenceGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeCentralDifferenceGradient(volIter); result = ((gradFloor + gradCeil) * -1.0f); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == SIMPLE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const uint8_t uFloor = volIter.getVoxel() > 0 ? 1 : 0; if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel1px0py0pz() > 0 ? 1 : 0; result = Vector3DFloat(static_cast(uFloor - uCeil),0.0,0.0); } else if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px1py0pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0,static_cast(uFloor - uCeil),0.0); } else if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px0py1pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0, 0.0,static_cast(uFloor - uCeil)); } } return result; } }