#include "SurfaceExtractors.h" #include "BlockVolume.h" #include "GradientEstimators.h" #include "IndexedSurfacePatch.h" #include "MarchingCubesTables.h" #include "Region.h" #include "VolumeIterator.h" using namespace boost; namespace PolyVox { void generateRoughMeshDataForRegion(BlockVolume* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch, IndexedSurfacePatch* multiMaterialPatch) { //When generating the mesh for a region we actually look one voxel outside it in the // back, bottom, right direction. Protect against access violations by cropping region here Region regVolume = volumeData->getEnclosingRegion(); regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(1,1,1)); region.cropTo(regVolume); const uint16_t firstX = region.getLowerCorner().x(); const uint16_t firstY = region.getLowerCorner().y(); const uint16_t firstZ = region.getLowerCorner().z(); const uint16_t lastX = region.getUpperCorner().x(); const uint16_t lastY = region.getUpperCorner().y(); const uint16_t lastZ = region.getUpperCorner().z(); //Offset from lower block corner const Vector3DFloat offset(firstX,firstY,firstZ); Vector3DFloat vertlist[12]; uint8_t vertMaterials[12]; VolumeIterator volIter(*volumeData); volIter.setValidRegion(firstX,firstY,firstZ,lastX,lastY,lastZ); ////////////////////////////////////////////////////////////////////////// //Get mesh data ////////////////////////////////////////////////////////////////////////// //Iterate over each cell in the region for(volIter.setPosition(firstX,firstY,firstZ);volIter.isValidForRegion();volIter.moveForwardInRegion()) { //Current position const uint16_t x = volIter.getPosX(); const uint16_t y = volIter.getPosY(); const uint16_t z = volIter.getPosZ(); //Voxels values const uint8_t v000 = volIter.getVoxel(); const uint8_t v100 = volIter.peekVoxel1px0py0pz(); const uint8_t v010 = volIter.peekVoxel0px1py0pz(); const uint8_t v110 = volIter.peekVoxel1px1py0pz(); const uint8_t v001 = volIter.peekVoxel0px0py1pz(); const uint8_t v101 = volIter.peekVoxel1px0py1pz(); const uint8_t v011 = volIter.peekVoxel0px1py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 4; if (v010 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 64; if (v011 == 0) iCubeIndex |= 128; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { vertlist[0].setX(x + 0.5f); vertlist[0].setY(y); vertlist[0].setZ(z); vertMaterials[0] = v000 | v100; //Because one of these is 0, the or operation takes the max. } if (edgeTable[iCubeIndex] & 2) { vertlist[1].setX(x + 1.0f); vertlist[1].setY(y + 0.5f); vertlist[1].setZ(z); vertMaterials[1] = v100 | v110; } if (edgeTable[iCubeIndex] & 4) { vertlist[2].setX(x + 0.5f); vertlist[2].setY(y + 1.0f); vertlist[2].setZ(z); vertMaterials[2] = v010 | v110; } if (edgeTable[iCubeIndex] & 8) { vertlist[3].setX(x); vertlist[3].setY(y + 0.5f); vertlist[3].setZ(z); vertMaterials[3] = v000 | v010; } if (edgeTable[iCubeIndex] & 16) { vertlist[4].setX(x + 0.5f); vertlist[4].setY(y); vertlist[4].setZ(z + 1.0f); vertMaterials[4] = v001 | v101; } if (edgeTable[iCubeIndex] & 32) { vertlist[5].setX(x + 1.0f); vertlist[5].setY(y + 0.5f); vertlist[5].setZ(z + 1.0f); vertMaterials[5] = v101 | v111; } if (edgeTable[iCubeIndex] & 64) { vertlist[6].setX(x + 0.5f); vertlist[6].setY(y + 1.0f); vertlist[6].setZ(z + 1.0f); vertMaterials[6] = v011 | v111; } if (edgeTable[iCubeIndex] & 128) { vertlist[7].setX(x); vertlist[7].setY(y + 0.5f); vertlist[7].setZ(z + 1.0f); vertMaterials[7] = v001 | v011; } if (edgeTable[iCubeIndex] & 256) { vertlist[8].setX(x); vertlist[8].setY(y); vertlist[8].setZ(z + 0.5f); vertMaterials[8] = v000 | v001; } if (edgeTable[iCubeIndex] & 512) { vertlist[9].setX(x + 1.0f); vertlist[9].setY(y); vertlist[9].setZ(z + 0.5f); vertMaterials[9] = v100 | v101; } if (edgeTable[iCubeIndex] & 1024) { vertlist[10].setX(x + 1.0f); vertlist[10].setY(y + 1.0f); vertlist[10].setZ(z + 0.5f); vertMaterials[10] = v110 | v111; } if (edgeTable[iCubeIndex] & 2048) { vertlist[11].setX(x); vertlist[11].setY(y + 1.0f); vertlist[11].setZ(z + 0.5f); vertMaterials[11] = v010 | v011; } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { //The three vertices forming a triangle const Vector3DFloat vertex0 = vertlist[triTable[iCubeIndex][i ]] - offset; const Vector3DFloat vertex1 = vertlist[triTable[iCubeIndex][i+1]] - offset; const Vector3DFloat vertex2 = vertlist[triTable[iCubeIndex][i+2]] - offset; //Cast to floats and divide by two. //const Vector3DFloat vertex0AsFloat = (static_cast(vertex0) / 2.0f) - offset; //const Vector3DFloat vertex1AsFloat = (static_cast(vertex1) / 2.0f) - offset; //const Vector3DFloat vertex2AsFloat = (static_cast(vertex2) / 2.0f) - offset; const uint8_t material0 = vertMaterials[triTable[iCubeIndex][i ]]; const uint8_t material1 = vertMaterials[triTable[iCubeIndex][i+1]]; const uint8_t material2 = vertMaterials[triTable[iCubeIndex][i+2]]; //If all the materials are the same, we just need one triangle for that material with all the alphas set high. if((material0 == material1) && (material1 == material2)) { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f); singleMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } else if(material0 == material1) { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1f,0.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material2 + 0.1f,0.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material2 + 0.1f,0.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } else if(material0 == material2) { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1f,0.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1f,1.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1f,0.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1f,0.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } else if(material1 == material2) { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1f,0.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1f,1.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1f,0.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1f,0.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } else { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1f,0.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1f,0.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1f,0.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1f,0.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material2 + 0.1f,0.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material2 + 0.1f,0.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } //If there not all the same, we need one triangle for each unique material. //We'll also need some vertices with low alphas for blending. /*else { SurfaceVertex surfaceVertex0Alpha0(vertex0,0.0); SurfaceVertex surfaceVertex1Alpha0(vertex1,0.0); SurfaceVertex surfaceVertex2Alpha0(vertex2,0.0); if(material0 == material1) { surfacePatchMapResult[material0]->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha0); surfacePatchMapResult[material2]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha0, surfaceVertex2Alpha1); } else if(material1 == material2) { surfacePatchMapResult[material1]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha1, surfaceVertex2Alpha1); surfacePatchMapResult[material0]->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha0, surfaceVertex2Alpha0); } else if(material2 == material0) { surfacePatchMapResult[material0]->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha0, surfaceVertex2Alpha1); surfacePatchMapResult[material1]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha1, surfaceVertex2Alpha0); } else { surfacePatchMapResult[material0]->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha0, surfaceVertex2Alpha0); surfacePatchMapResult[material1]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha1, surfaceVertex2Alpha0); surfacePatchMapResult[material2]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha0, surfaceVertex2Alpha1); } }*/ }//For each triangle }//For each cell //FIXME - can it happen that we have no vertices or triangles? Should exit early? //for(std::map::iterator iterPatch = surfacePatchMapResult.begin(); iterPatch != surfacePatchMapResult.end(); ++iterPatch) { std::vector::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != singleMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeNormal(volumeData, static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; } iterSurfaceVertex = multiMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != multiMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeNormal(volumeData, static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; } uint16_t noOfRemovedVertices = 0; //do { //noOfRemovedVertices = iterPatch->second.decimate(); } //while(noOfRemovedVertices > 10); //We don't worry about the last few vertices - it's not worth the overhead of calling the function. } //return singleMaterialPatch; } Vector3DFloat computeNormal(BlockVolume* volumeData, const Vector3DFloat& position, NormalGenerationMethod normalGenerationMethod) { const float posX = position.x(); const float posY = position.y(); const float posZ = position.z(); const uint16_t floorX = static_cast(posX); const uint16_t floorY = static_cast(posY); const uint16_t floorZ = static_cast(posZ); //Check all corners are within the volume, allowing a boundary for gradient estimation bool lowerCornerInside = volumeData->containsPoint(Vector3DInt32(floorX, floorY, floorZ),1); bool upperCornerInside = volumeData->containsPoint(Vector3DInt32(floorX+1, floorY+1, floorZ+1),1); if((!lowerCornerInside) || (!upperCornerInside)) { normalGenerationMethod = SIMPLE; } Vector3DFloat result; VolumeIterator volIter(*volumeData); //FIXME - save this somewhere - could be expensive to create? if(normalGenerationMethod == SOBEL) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeSobelGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeSobelGradient(volIter); result = ((gradFloor + gradCeil) * -1.0); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == CENTRAL_DIFFERENCE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeCentralDifferenceGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeCentralDifferenceGradient(volIter); result = ((gradFloor + gradCeil) * -1.0); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == SIMPLE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const uint8_t uFloor = volIter.getVoxel() > 0 ? 1 : 0; if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel1px0py0pz() > 0 ? 1 : 0; result = Vector3DFloat(static_cast(uFloor - uCeil),0.0,0.0); } else if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px1py0pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0,static_cast(uFloor - uCeil),0.0); } else if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px0py1pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0, 0.0,static_cast(uFloor - uCeil)); } } return result; } void generateSmoothMeshDataForRegion(BlockVolume* volumeData, uint16_t regionX, uint16_t regionY, uint16_t regionZ, IndexedSurfacePatch* singleMaterialPatch, IndexedSurfacePatch* multiMaterialPatch) { //First and last voxels in the region const uint16_t firstX = regionX * POLYVOX_REGION_SIDE_LENGTH; const uint16_t firstY = regionY * POLYVOX_REGION_SIDE_LENGTH; const uint16_t firstZ = regionZ * POLYVOX_REGION_SIDE_LENGTH; const uint16_t lastX = (std::min)(firstX + POLYVOX_REGION_SIDE_LENGTH-1,volumeData->getSideLength()-2); const uint16_t lastY = (std::min)(firstY + POLYVOX_REGION_SIDE_LENGTH-1,volumeData->getSideLength()-2); const uint16_t lastZ = (std::min)(firstZ + POLYVOX_REGION_SIDE_LENGTH-1,volumeData->getSideLength()-2); //Offset from lower block corner const Vector3DFloat offset(firstX,firstY,firstZ); Vector3DFloat vertlist[12]; uint8_t vertMaterials[12]; VolumeIterator volIter(*volumeData); volIter.setValidRegion(firstX,firstY,firstZ,lastX,lastY,lastZ); const float threshold = 0.5f; ////////////////////////////////////////////////////////////////////////// //Get mesh data ////////////////////////////////////////////////////////////////////////// //Iterate over each cell in the region for(volIter.setPosition(firstX,firstY,firstZ);volIter.isValidForRegion();volIter.moveForwardInRegion()) { //Current position const uint16_t x = volIter.getPosX(); const uint16_t y = volIter.getPosY(); const uint16_t z = volIter.getPosZ(); //Voxels values VolumeIterator tempVolIter(*volumeData); tempVolIter.setPosition(x,y,z); const float v000 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x+1,y,z); const float v100 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x,y+1,z); const float v010 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x+1,y+1,z); const float v110 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x,y,z+1); const float v001 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x+1,y,z+1); const float v101 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x,y+1,z+1); const float v011 = tempVolIter.getAveragedVoxel(1); tempVolIter.setPosition(x+1,y+1,z+1); const float v111 = tempVolIter.getAveragedVoxel(1); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if (v000 < threshold) iCubeIndex |= 1; if (v100 < threshold) iCubeIndex |= 2; if (v110 < threshold) iCubeIndex |= 4; if (v010 < threshold) iCubeIndex |= 8; if (v001 < threshold) iCubeIndex |= 16; if (v101 < threshold) iCubeIndex |= 32; if (v111 < threshold) iCubeIndex |= 64; if (v011 < threshold) iCubeIndex |= 128; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { float a = v000; float b = v100; float val = (threshold-a)/(b-a); vertlist[0].setX(x + val); vertlist[0].setY(y); vertlist[0].setZ(z); vertMaterials[0] = 1;//v000 | v100; //Because one of these is 0, the or operation takes the max. } if (edgeTable[iCubeIndex] & 2) { float a = v100; float b = v110; float val = (threshold-a)/(b-a); vertlist[1].setX(x + 1.0f); vertlist[1].setY(y + val); vertlist[1].setZ(z); vertMaterials[1] = 1;//v100 | v110; } if (edgeTable[iCubeIndex] & 4) { float a = v010; float b = v110; float val = (threshold-a)/(b-a); vertlist[2].setX(x + val); vertlist[2].setY(y + 1.0f); vertlist[2].setZ(z); vertMaterials[2] = 1;//v010 | v110; } if (edgeTable[iCubeIndex] & 8) { float a = v000; float b = v010; float val = (threshold-a)/(b-a); vertlist[3].setX(x); vertlist[3].setY(y + val); vertlist[3].setZ(z); vertMaterials[3] = 1;//v000 | v010; } if (edgeTable[iCubeIndex] & 16) { float a = v001; float b = v101; float val = (threshold-a)/(b-a); vertlist[4].setX(x + val); vertlist[4].setY(y); vertlist[4].setZ(z + 1.0f); vertMaterials[4] = 1;//v001 | v101; } if (edgeTable[iCubeIndex] & 32) { float a = v101; float b = v111; float val = (threshold-a)/(b-a); vertlist[5].setX(x + 1.0f); vertlist[5].setY(y + val); vertlist[5].setZ(z + 1.0f); vertMaterials[5] = 1;//v101 | v111; } if (edgeTable[iCubeIndex] & 64) { float a = v011; float b = v111; float val = (threshold-a)/(b-a); vertlist[6].setX(x + val); vertlist[6].setY(y + 1.0f); vertlist[6].setZ(z + 1.0f); vertMaterials[6] = 1;//v011 | v111; } if (edgeTable[iCubeIndex] & 128) { float a = v001; float b = v011; float val = (threshold-a)/(b-a); vertlist[7].setX(x); vertlist[7].setY(y + val); vertlist[7].setZ(z + 1.0f); vertMaterials[7] = 1;//v001 | v011; } if (edgeTable[iCubeIndex] & 256) { float a = v000; float b = v001; float val = (threshold-a)/(b-a); vertlist[8].setX(x); vertlist[8].setY(y); vertlist[8].setZ(z + val); vertMaterials[8] = 1;//v000 | v001; } if (edgeTable[iCubeIndex] & 512) { float a = v100; float b = v101; float val = (threshold-a)/(b-a); vertlist[9].setX(x + 1.0f); vertlist[9].setY(y); vertlist[9].setZ(z + val); vertMaterials[9] = 1;//v100 | v101; } if (edgeTable[iCubeIndex] & 1024) { float a = v110; float b = v111; float val = (threshold-a)/(b-a); vertlist[10].setX(x + 1.0f); vertlist[10].setY(y + 1.0f); vertlist[10].setZ(z + val); vertMaterials[10] = 1;//v110 | v111; } if (edgeTable[iCubeIndex] & 2048) { float a = v010; float b = v011; float val = (threshold-a)/(b-a); vertlist[11].setX(x); vertlist[11].setY(y + 1.0f); vertlist[11].setZ(z + val); vertMaterials[11] = 1;//v010 | v011; } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { //The three vertices forming a triangle const Vector3DFloat vertex0 = vertlist[triTable[iCubeIndex][i ]] - offset; const Vector3DFloat vertex1 = vertlist[triTable[iCubeIndex][i+1]] - offset; const Vector3DFloat vertex2 = vertlist[triTable[iCubeIndex][i+2]] - offset; const uint8_t material0 = vertMaterials[triTable[iCubeIndex][i ]]; const uint8_t material1 = vertMaterials[triTable[iCubeIndex][i+1]]; const uint8_t material2 = vertMaterials[triTable[iCubeIndex][i+2]]; //If all the materials are the same, we just need one triangle for that material with all the alphas set high. /*if((material0 == material1) && (material1 == material2)) {*/ SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1f,1.0f); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1f,1.0f); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1f,1.0f); singleMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); /*} else if(material0 == material1) { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,1.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,0.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material2 + 0.1,0.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material2 + 0.1,0.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1,1.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } else if(material0 == material2) { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,0.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,1.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1,0.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1,0.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } else if(material1 == material2) { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1,0.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1,1.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,0.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,0.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } } else { { SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,0.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,0.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1,0.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1,0.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } { SurfaceVertex surfaceVertex0Alpha1(vertex0,material2 + 0.1,0.0); SurfaceVertex surfaceVertex1Alpha1(vertex1,material2 + 0.1,0.0); SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1,1.0); multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1); } }*/ }//For each triangle }//For each cell //FIXME - can it happen that we have no vertices or triangles? Should exit early? //for(std::map::iterator iterPatch = surfacePatchMapResult.begin(); iterPatch != surfacePatchMapResult.end(); ++iterPatch) { std::vector::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != singleMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeSmoothNormal(volumeData, static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; } iterSurfaceVertex = multiMaterialPatch->getVertices().begin(); while(iterSurfaceVertex != multiMaterialPatch->getVertices().end()) { Vector3DFloat tempNormal = computeSmoothNormal(volumeData, static_cast(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE); const_cast(*iterSurfaceVertex).setNormal(tempNormal); ++iterSurfaceVertex; } } } Vector3DFloat computeSmoothNormal(BlockVolume* volumeData, const Vector3DFloat& position, NormalGenerationMethod normalGenerationMethod) { const float posX = position.x(); const float posY = position.y(); const float posZ = position.z(); const uint16_t floorX = static_cast(posX); const uint16_t floorY = static_cast(posY); const uint16_t floorZ = static_cast(posZ); //Check all corners are within the volume, allowing a boundary for gradient estimation bool lowerCornerInside = volumeData->containsPoint(Vector3DInt32(floorX, floorY, floorZ),1); bool upperCornerInside = volumeData->containsPoint(Vector3DInt32(floorX+1, floorY+1, floorZ+1),1); if((!lowerCornerInside) || (!upperCornerInside)) { normalGenerationMethod = SIMPLE; } Vector3DFloat result; VolumeIterator volIter(*volumeData); //FIXME - save this somewhere - could be expensive to create? if(normalGenerationMethod == SOBEL) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeSobelGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeSobelGradient(volIter); result = ((gradFloor + gradCeil) * -1.0); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == CENTRAL_DIFFERENCE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3DFloat gradFloor = computeSmoothCentralDifferenceGradient(volIter); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3DFloat gradCeil = computeSmoothCentralDifferenceGradient(volIter); result = ((gradFloor + gradCeil) * -1.0); if(result.lengthSquared() < 0.0001) { //Operation failed - fall back on simple gradient estimation normalGenerationMethod = SIMPLE; } } if(normalGenerationMethod == SIMPLE) { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const uint8_t uFloor = volIter.getVoxel() > 0 ? 1 : 0; if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel1px0py0pz() > 0 ? 1 : 0; result = Vector3DFloat(static_cast(uFloor - uCeil),0.0,0.0); } else if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px1py0pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0,static_cast(uFloor - uCeil),0.0); } else if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { uint8_t uCeil = volIter.peekVoxel0px0py1pz() > 0 ? 1 : 0; result = Vector3DFloat(0.0, 0.0,static_cast(uFloor - uCeil)); } } return result; } }