#include "SurfaceExtractor.h" #include "IndexedSurfacePatch.h" #include "PolyVoxImpl/MarchingCubesTables.h" #include "SurfaceVertex.h" namespace PolyVox { SurfaceExtractor::SurfaceExtractor(Volume& volData) :m_uLodLevel(0) ,m_volData(volData) ,m_iterVolume(volData) { } uint8_t SurfaceExtractor::getLodLevel(void) { return m_uLodLevel; } void SurfaceExtractor::setLodLevel(uint8_t uLodLevel) { m_uLodLevel = uLodLevel; //Step size is 2^uLodLevel m_uStepSize = 1 << uLodLevel; } POLYVOX_SHARED_PTR SurfaceExtractor::extractSurfaceForRegion(Region region) { POLYVOX_SHARED_PTR result(new IndexedSurfacePatch()); extractSurfaceImpl(&m_volData, region, result.get()); result->m_Region = region; return result; } uint32_t SurfaceExtractor::getIndex(uint32_t x, uint32_t y, uint32_t regionWidth) { return x + (y * (regionWidth+1)); } //////////////////////////////////////////////////////////////////////////////// // Level 0 //////////////////////////////////////////////////////////////////////////////// /*uint32_t SurfaceExtractor::computeBitmaskForSliceLevel0(VolumeSampler& volIter, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, uint8_t* previousBitmask) { uint32_t uNoOfNonEmptyCells = 0; //Iterate over each cell in the region for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace++) { for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace <= regSlice.getUpperCorner().getX(); uXVolSpace++) { uint16_t uZVolSpace = regSlice.getLowerCorner().getZ(); volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); //Current position const uint16_t uXRegSpace = volIter.getPosX() - offset.getX(); const uint16_t uYRegSpace = volIter.getPosY() - offset.getY(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if((uXVolSpace < volIter.getVolume().getWidth()-1) && (uYVolSpace < volIter.getVolume().getHeight()-1) && (uZVolSpace < volIter.getVolume().getDepth()-1)) { bool isPrevXAvail = uXRegSpace > 0; bool isPrevYAvail = uYRegSpace > 0; bool isPrevZAvail = previousBitmask != 0; if(isPrevZAvail) { if(isPrevYAvail) { if(isPrevXAvail) { const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexZ >>= 4; //y uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)]; iPreviousCubeIndexY &= 204; //204 = 128+64+8+4 iPreviousCubeIndexY >>= 2; //x uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexX &= 170; //170 = 128+32+8+2 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { const uint8_t v011 = volIter.peekVoxel0px1py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexZ >>= 4; //y uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)]; iPreviousCubeIndexY &= 192; //192 = 128 + 64 iPreviousCubeIndexY >>= 2; iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } else //previous Y not available { if(isPrevXAvail) { const uint8_t v101 = volIter.peekVoxel1px0py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexZ >>= 4; //x uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexX &= 160; //160 = 128+32 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { const uint8_t v001 = volIter.peekVoxel0px0py1pz(); const uint8_t v101 = volIter.peekVoxel1px0py1pz(); const uint8_t v011 = volIter.peekVoxel0px1py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; iCubeIndex = iPreviousCubeIndexZ >> 4; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } } else //previous Z not available { if(isPrevYAvail) { if(isPrevXAvail) { const uint8_t v110 = volIter.peekVoxel1px1py0pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //y uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)]; iPreviousCubeIndexY &= 204; //204 = 128+64+8+4 iPreviousCubeIndexY >>= 2; //x uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexX &= 170; //170 = 128+32+8+2 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY; if (v110 == 0) iCubeIndex |= 8; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { const uint8_t v010 = volIter.peekVoxel0px1py0pz(); const uint8_t v110 = volIter.peekVoxel1px1py0pz(); const uint8_t v011 = volIter.peekVoxel0px1py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //y uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)]; iPreviousCubeIndexY &= 204; //204 = 128+64+8+4 iPreviousCubeIndexY >>= 2; iCubeIndex = iPreviousCubeIndexY; if (v010 == 0) iCubeIndex |= 4; if (v110 == 0) iCubeIndex |= 8; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } else //previous Y not available { if(isPrevXAvail) { const uint8_t v100 = volIter.peekVoxel1px0py0pz(); const uint8_t v110 = volIter.peekVoxel1px1py0pz(); const uint8_t v101 = volIter.peekVoxel1px0py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); //x uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexX &= 170; //170 = 128+32+8+2 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 8; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { const uint8_t v000 = volIter.getVoxel(); const uint8_t v100 = volIter.peekVoxel1px0py0pz(); const uint8_t v010 = volIter.peekVoxel0px1py0pz(); const uint8_t v110 = volIter.peekVoxel1px1py0pz(); const uint8_t v001 = volIter.peekVoxel0px0py1pz(); const uint8_t v101 = volIter.peekVoxel1px0py1pz(); const uint8_t v011 = volIter.peekVoxel0px1py1pz(); const uint8_t v111 = volIter.peekVoxel1px1py1pz(); if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v010 == 0) iCubeIndex |= 4; if (v110 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } } } else //We're at the edge of the volume - use bounds checking. { const uint8_t v000 = volIter.getVoxel(); const uint8_t v100 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace , uZVolSpace ); const uint8_t v010 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace+1, uZVolSpace ); const uint8_t v110 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace+1, uZVolSpace ); const uint8_t v001 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace , uZVolSpace+1); const uint8_t v101 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace , uZVolSpace+1); const uint8_t v011 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace+1, uZVolSpace+1); const uint8_t v111 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace+1, uZVolSpace+1); if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v010 == 0) iCubeIndex |= 4; if (v110 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } //Save the bitmask bitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)] = iCubeIndex; if(edgeTable[iCubeIndex] != 0) { ++uNoOfNonEmptyCells; } } } return uNoOfNonEmptyCells; }*/ //////////////////////////////////////////////////////////////////////////////// // Level 1 //////////////////////////////////////////////////////////////////////////////// void SurfaceExtractor::extractSurfaceImpl(Volume* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch) { singleMaterialPatch->clear(); //For edge indices //FIXME - do the slices need to be this big? Surely for a decimated mesh they can be smaller? //FIXME - Instead of region.width()+2 we used to use POLYVOX_REGION_SIDE_LENGTH+1 //Normally POLYVOX_REGION_SIDE_LENGTH is the same as region.width() (often 32) but at the //edges of the volume it is 1 smaller. Need to think what values really belong here. int32_t* vertexIndicesX0 = new int32_t[(region.width()+8) * (region.height()+8)]; int32_t* vertexIndicesY0 = new int32_t[(region.width()+8) * (region.height()+8)]; int32_t* vertexIndicesZ0 = new int32_t[(region.width()+8) * (region.height()+8)]; int32_t* vertexIndicesX1 = new int32_t[(region.width()+8) * (region.height()+8)]; int32_t* vertexIndicesY1 = new int32_t[(region.width()+8) * (region.height()+8)]; int32_t* vertexIndicesZ1 = new int32_t[(region.width()+8) * (region.height()+8)]; //Cell bitmasks uint8_t* bitmask0 = new uint8_t[(region.width()+8) * (region.height()+8)]; uint8_t* bitmask1 = new uint8_t[(region.width()+8) * (region.height()+8)]; //When generating the mesh for a region we actually look outside it in the // back, bottom, right direction. Protect against access violations by cropping region here Region regVolume = volumeData->getEnclosingRegion(); if(m_uLodLevel > 0) { regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(2*m_uStepSize-1,2*m_uStepSize-1,2*m_uStepSize-1)); } region.cropTo(regVolume); //Offset from volume corner const Vector3DFloat offset = static_cast(region.getLowerCorner()); //Create a region corresponding to the first slice Region regSlice0(region); Vector3DInt32 v3dUpperCorner = regSlice0.getUpperCorner(); v3dUpperCorner.setZ(regSlice0.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick. regSlice0.setUpperCorner(v3dUpperCorner); //Iterator to access the volume data VolumeSampler volIter(*volumeData); //Compute bitmask for initial slice uint32_t uNoOfNonEmptyCellsForSlice0 = computeBitmaskForSlice(volIter, regSlice0, offset, bitmask0, 0); if(uNoOfNonEmptyCellsForSlice0 != 0) { //If there were some non-empty cells then generate initial slice vertices for them generateVerticesForSlice(volIter, regSlice0, offset, bitmask0, singleMaterialPatch, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0); } for(uint32_t uSlice = 1; ((uSlice <= region.depth()) && (uSlice + offset.getZ() <= regVolume.getUpperCorner().getZ())); uSlice += m_uStepSize) { Region regSlice1(regSlice0); regSlice1.shift(Vector3DInt32(0,0,m_uStepSize)); uint32_t uNoOfNonEmptyCellsForSlice1 = computeBitmaskForSlice(volIter, regSlice1, offset, bitmask1, bitmask0); if(uNoOfNonEmptyCellsForSlice1 != 0) { generateVerticesForSlice(volIter, regSlice1, offset, bitmask1, singleMaterialPatch, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1); } if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0)) { generateIndicesForSlice(volIter, regSlice0, singleMaterialPatch, offset, bitmask0, bitmask1, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1); } std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1); std::swap(bitmask0, bitmask1); std::swap(vertexIndicesX0, vertexIndicesX1); std::swap(vertexIndicesY0, vertexIndicesY1); std::swap(vertexIndicesZ0, vertexIndicesZ1); regSlice0 = regSlice1; } delete[] bitmask0; delete[] bitmask1; delete[] vertexIndicesX0; delete[] vertexIndicesX1; delete[] vertexIndicesY0; delete[] vertexIndicesY1; delete[] vertexIndicesZ0; delete[] vertexIndicesZ1; } uint32_t SurfaceExtractor::computeBitmaskForSlice(VolumeSampler& volIter, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, uint8_t* previousBitmask) { uint32_t uNoOfNonEmptyCells = 0; //Iterate over each cell in the region for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace += m_uStepSize) { for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace <= regSlice.getUpperCorner().getX(); uXVolSpace += m_uStepSize) { uint16_t uZVolSpace = regSlice.getLowerCorner().getZ(); //Current position volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); const uint16_t uXRegSpace = uXVolSpace - offset.getX(); const uint16_t uYRegSpace = uYVolSpace - offset.getY(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = 0; if((uXVolSpace < volIter.getVolume().getWidth()-m_uStepSize) && (uYVolSpace < volIter.getVolume().getHeight()-m_uStepSize) && (uZVolSpace < volIter.getVolume().getDepth()-m_uStepSize)) { bool isPrevXAvail = uXRegSpace > 0; bool isPrevYAvail = uYRegSpace > 0; bool isPrevZAvail = previousBitmask != 0; if(isPrevZAvail) { if(isPrevYAvail) { if(isPrevXAvail) { volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexZ >>= 4; //y uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize, regSlice.width()+1)]; iPreviousCubeIndexY &= 192; //192 = 128 + 64 iPreviousCubeIndexY >>= 2; //x uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexX &= 128; iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { volIter.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); const uint8_t v011 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexZ >>= 4; //y uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize, regSlice.width()+1)]; iPreviousCubeIndexY &= 192; //192 = 128 + 64 iPreviousCubeIndexY >>= 2; iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } else //previous Y not available { if(isPrevXAvail) { volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize); const uint8_t v101 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexZ >>= 4; //x uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexX &= 160; //160 = 128+32 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+m_uStepSize); const uint8_t v001 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize); const uint8_t v101 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); const uint8_t v011 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel); //z uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; iCubeIndex = iPreviousCubeIndexZ >> 4; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } } else //previous Z not available { if(isPrevYAvail) { if(isPrevXAvail) { volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace); const uint8_t v110 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel); //y uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize, regSlice.width()+1)]; iPreviousCubeIndexY &= 204; //204 = 128+64+8+4 iPreviousCubeIndexY >>= 2; //x uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexX &= 170; //170 = 128+32+8+2 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY; if (v110 == 0) iCubeIndex |= 8; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { volIter.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace); const uint8_t v010 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace); const uint8_t v110 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); const uint8_t v011 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel); //y uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-m_uStepSize, regSlice.width()+1)]; iPreviousCubeIndexY &= 204; //204 = 128+64+8+4 iPreviousCubeIndexY >>= 2; iCubeIndex = iPreviousCubeIndexY; if (v010 == 0) iCubeIndex |= 4; if (v110 == 0) iCubeIndex |= 8; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } else //previous Y not available { if(isPrevXAvail) { volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace); const uint8_t v100 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace); const uint8_t v110 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize); const uint8_t v101 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel); //x uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-m_uStepSize,uYRegSpace, regSlice.width()+1)]; iPreviousCubeIndexX &= 170; //170 = 128+32+8+2 iPreviousCubeIndexX >>= 1; iCubeIndex = iPreviousCubeIndexX; if (v100 == 0) iCubeIndex |= 2; if (v110 == 0) iCubeIndex |= 8; if (v101 == 0) iCubeIndex |= 32; if (v111 == 0) iCubeIndex |= 128; } else //previous X not available { volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); const uint8_t v000 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace); const uint8_t v100 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace); const uint8_t v010 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace); const uint8_t v110 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+m_uStepSize); const uint8_t v001 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace,uZVolSpace+m_uStepSize); const uint8_t v101 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); const uint8_t v011 = volIter.getSubSampledVoxel(m_uLodLevel); volIter.setPosition(uXVolSpace+m_uStepSize,uYVolSpace+m_uStepSize,uZVolSpace+m_uStepSize); const uint8_t v111 = volIter.getSubSampledVoxel(m_uLodLevel); if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v010 == 0) iCubeIndex |= 4; if (v110 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } } } else { if(m_uLodLevel == 0) { const uint8_t v000 = volIter.getVoxel(); const uint8_t v100 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace , uZVolSpace ); const uint8_t v010 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace+1, uZVolSpace ); const uint8_t v110 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace+1, uZVolSpace ); const uint8_t v001 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace , uZVolSpace+1); const uint8_t v101 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace , uZVolSpace+1); const uint8_t v011 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace+1, uZVolSpace+1); const uint8_t v111 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace+1, uZVolSpace+1); if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v010 == 0) iCubeIndex |= 4; if (v110 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } else { const uint8_t v000 = volIter.getSubSampledVoxelWithBoundsCheck(m_uLodLevel); volIter.setPosition(uXVolSpace+1, uYVolSpace , uZVolSpace ); const uint8_t v100 = volIter.getSubSampledVoxelWithBoundsCheck(m_uLodLevel); volIter.setPosition(uXVolSpace , uYVolSpace+1, uZVolSpace ); const uint8_t v010 = volIter.getSubSampledVoxelWithBoundsCheck(m_uLodLevel); volIter.setPosition(uXVolSpace+1, uYVolSpace+1, uZVolSpace ); const uint8_t v110 = volIter.getSubSampledVoxelWithBoundsCheck(m_uLodLevel); volIter.setPosition(uXVolSpace , uYVolSpace , uZVolSpace+1); const uint8_t v001 = volIter.getSubSampledVoxelWithBoundsCheck(m_uLodLevel); volIter.setPosition(uXVolSpace+1, uYVolSpace , uZVolSpace+1); const uint8_t v101 = volIter.getSubSampledVoxelWithBoundsCheck(m_uLodLevel); volIter.setPosition(uXVolSpace , uYVolSpace+1, uZVolSpace+1); const uint8_t v011 = volIter.getSubSampledVoxelWithBoundsCheck(m_uLodLevel); volIter.setPosition(uXVolSpace+1, uYVolSpace+1, uZVolSpace+1); const uint8_t v111 = volIter.getSubSampledVoxelWithBoundsCheck(m_uLodLevel); if (v000 == 0) iCubeIndex |= 1; if (v100 == 0) iCubeIndex |= 2; if (v010 == 0) iCubeIndex |= 4; if (v110 == 0) iCubeIndex |= 8; if (v001 == 0) iCubeIndex |= 16; if (v101 == 0) iCubeIndex |= 32; if (v011 == 0) iCubeIndex |= 64; if (v111 == 0) iCubeIndex |= 128; } } //Save the bitmask bitmask[getIndex(uXRegSpace,uYVolSpace- offset.getY(), regSlice.width()+1)] = iCubeIndex; if(edgeTable[iCubeIndex] != 0) { ++uNoOfNonEmptyCells; } }//For each cell } return uNoOfNonEmptyCells; } void SurfaceExtractor::generateVerticesForSlice(VolumeSampler& volIter, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,int32_t vertexIndicesX[],int32_t vertexIndicesY[],int32_t vertexIndicesZ[]) { //Iterate over each cell in the region for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace += m_uStepSize) { for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace <= regSlice.getUpperCorner().getX(); uXVolSpace += m_uStepSize) { uint16_t uZVolSpace = regSlice.getLowerCorner().getZ(); //Current position const uint16_t uXRegSpace = uXVolSpace - offset.getX(); const uint16_t uYRegSpace = uYVolSpace - offset.getY(); const uint16_t uZRegSpace = uZVolSpace - offset.getZ(); //Current position //const uint16_t z = regSlice.getLowerCorner().getZ(); volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); const uint8_t v000 = volIter.getSubSampledVoxel(m_uLodLevel); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = bitmask[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { if(uXVolSpace != regSlice.getUpperCorner().getX()) { volIter.setPosition(uXVolSpace + m_uStepSize,uYVolSpace,uZVolSpace); const uint8_t v100 = volIter.getSubSampledVoxel(m_uLodLevel); const Vector3DFloat v3dPosition(uXVolSpace - offset.getX() + 0.5f * m_uStepSize, uYVolSpace - offset.getY(), uZVolSpace - offset.getZ()); const Vector3DFloat v3dNormal(v000 > v100 ? 1.0f : -1.0f,0.0,0.0); const uint8_t uMaterial = v000 | v100; //Because one of these is 0, the or operation takes the max. SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex); vertexIndicesX[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)] = uLastVertexIndex; } } if (edgeTable[iCubeIndex] & 8) { if(uYVolSpace != regSlice.getUpperCorner().getY()) { volIter.setPosition(uXVolSpace,uYVolSpace + m_uStepSize,uZVolSpace); const uint8_t v010 = volIter.getSubSampledVoxel(m_uLodLevel); const Vector3DFloat v3dPosition(uXVolSpace - offset.getX(), uYVolSpace - offset.getY() + 0.5f * m_uStepSize, uZVolSpace - offset.getZ()); const Vector3DFloat v3dNormal(0.0,v000 > v010 ? 1.0f : -1.0f,0.0); const uint8_t uMaterial = v000 | v010; //Because one of these is 0, the or operation takes the max. SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex); vertexIndicesY[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)] = uLastVertexIndex; } } if (edgeTable[iCubeIndex] & 256) { //if(z != regSlice.getUpperCorner.getZ()) { volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace + m_uStepSize); const uint8_t v001 = volIter.getSubSampledVoxel(m_uLodLevel); const Vector3DFloat v3dPosition(uXVolSpace - offset.getX(), uYVolSpace - offset.getY(), uZVolSpace - offset.getZ() + 0.5f * m_uStepSize); const Vector3DFloat v3dNormal(0.0,0.0,v000 > v001 ? 1.0f : -1.0f); const uint8_t uMaterial = v000 | v001; //Because one of these is 0, the or operation takes the max. const SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial); uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex); vertexIndicesZ[getIndex(uXVolSpace - offset.getX(),uYVolSpace - offset.getY(), regSlice.width()+1)] = uLastVertexIndex; } } }//For each cell } } void SurfaceExtractor::generateIndicesForSlice(VolumeSampler& volIter, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8_t* bitmask0, uint8_t* bitmask1, int32_t vertexIndicesX0[],int32_t vertexIndicesY0[],int32_t vertexIndicesZ0[], int32_t vertexIndicesX1[],int32_t vertexIndicesY1[],int32_t vertexIndicesZ1[]) { uint32_t indlist[12]; for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace < regSlice.getUpperCorner().getY(); uYVolSpace += m_uStepSize) { for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace < regSlice.getUpperCorner().getX(); uXVolSpace += m_uStepSize) { uint16_t uZVolSpace = regSlice.getLowerCorner().getZ(); volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace); //Current position const uint16_t uXRegSpace = volIter.getPosX() - offset.getX(); const uint16_t uYRegSpace = volIter.getPosY() - offset.getY(); const uint16_t uZRegSpace = volIter.getPosZ() - offset.getZ(); //Determine the index into the edge table which tells us which vertices are inside of the surface uint8_t iCubeIndex = bitmask0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; /* Cube is entirely in/out of the surface */ if (edgeTable[iCubeIndex] == 0) { continue; } /* Find the vertices where the surface intersects the cube */ if (edgeTable[iCubeIndex] & 1) { indlist[0] = vertexIndicesX0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; assert(indlist[0] != -1); } if (edgeTable[iCubeIndex] & 2) { indlist[1] = vertexIndicesY0[getIndex(uXRegSpace+m_uStepSize,uYRegSpace, regSlice.width()+1)]; assert(indlist[1] != -1); } if (edgeTable[iCubeIndex] & 4) { indlist[2] = vertexIndicesX0[getIndex(uXRegSpace,uYRegSpace+m_uStepSize, regSlice.width()+1)]; assert(indlist[2] != -1); } if (edgeTable[iCubeIndex] & 8) { indlist[3] = vertexIndicesY0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; assert(indlist[3] != -1); } if (edgeTable[iCubeIndex] & 16) { indlist[4] = vertexIndicesX1[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; assert(indlist[4] != -1); } if (edgeTable[iCubeIndex] & 32) { indlist[5] = vertexIndicesY1[getIndex(uXRegSpace+m_uStepSize,uYRegSpace, regSlice.width()+1)]; assert(indlist[5] != -1); } if (edgeTable[iCubeIndex] & 64) { indlist[6] = vertexIndicesX1[getIndex(uXRegSpace,uYRegSpace+m_uStepSize, regSlice.width()+1)]; assert(indlist[6] != -1); } if (edgeTable[iCubeIndex] & 128) { indlist[7] = vertexIndicesY1[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; assert(indlist[7] != -1); } if (edgeTable[iCubeIndex] & 256) { indlist[8] = vertexIndicesZ0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)]; assert(indlist[8] != -1); } if (edgeTable[iCubeIndex] & 512) { indlist[9] = vertexIndicesZ0[getIndex(uXRegSpace+m_uStepSize,uYRegSpace, regSlice.width()+1)]; assert(indlist[9] != -1); } if (edgeTable[iCubeIndex] & 1024) { indlist[10] = vertexIndicesZ0[getIndex(uXRegSpace+m_uStepSize,uYRegSpace+m_uStepSize, regSlice.width()+1)]; assert(indlist[10] != -1); } if (edgeTable[iCubeIndex] & 2048) { indlist[11] = vertexIndicesZ0[getIndex(uXRegSpace,uYRegSpace+m_uStepSize, regSlice.width()+1)]; assert(indlist[11] != -1); } for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3) { uint32_t ind0 = indlist[triTable[iCubeIndex][i ]]; uint32_t ind1 = indlist[triTable[iCubeIndex][i+1]]; uint32_t ind2 = indlist[triTable[iCubeIndex][i+2]]; singleMaterialPatch->addTriangle(ind0, ind1, ind2); }//For each triangle }//For each cell } } }