/******************************************************************************* Copyright (c) 2005-2009 David Williams This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. *******************************************************************************/ #include "Array.h" #include "MaterialDensityPair.h" #include "SurfaceMesh.h" #include "PolyVoxImpl/MarchingCubesTables.h" #include "VertexTypes.h" namespace PolyVox { template< template class VolumeType, typename VoxelType> const uint32_t ImprovedCubicSurfaceExtractor::MaxQuadsSharingVertex = 4; template< template class VolumeType, typename VoxelType> ImprovedCubicSurfaceExtractor::ImprovedCubicSurfaceExtractor(VolumeType* volData, Region region, SurfaceMesh* result, bool bMergeQuads) :m_volData(volData) ,m_sampVolume(volData) ,m_regSizeInVoxels(region) ,m_meshCurrent(result) ,m_bMergeQuads(bMergeQuads) { m_meshCurrent->clear(); } template< template class VolumeType, typename VoxelType> void ImprovedCubicSurfaceExtractor::execute() { uint32_t uArrayWidth = m_regSizeInVoxels.getUpperCorner().getX() - m_regSizeInVoxels.getLowerCorner().getX() + 2; uint32_t uArrayHeight = m_regSizeInVoxels.getUpperCorner().getY() - m_regSizeInVoxels.getLowerCorner().getY() + 2; uint32_t arraySize[3]= {uArrayWidth, uArrayHeight, MaxQuadsSharingVertex}; m_previousSliceVertices.resize(arraySize); m_currentSliceVertices.resize(arraySize); memset(m_previousSliceVertices.getRawData(), 0xff, m_previousSliceVertices.getNoOfElements() * sizeof(IndexAndMaterial)); memset(m_currentSliceVertices.getRawData(), 0xff, m_currentSliceVertices.getNoOfElements() * sizeof(IndexAndMaterial)); uint32_t uRegionWidth = m_regSizeInVoxels.getUpperCorner().getX() - m_regSizeInVoxels.getLowerCorner().getX() + 1; uint32_t uRegionHeight = m_regSizeInVoxels.getUpperCorner().getY() - m_regSizeInVoxels.getLowerCorner().getY() + 1; uint32_t uRegionDepth = m_regSizeInVoxels.getUpperCorner().getZ() - m_regSizeInVoxels.getLowerCorner().getZ() + 1; m_faces.resize(ArraySizes(uRegionWidth)(uRegionHeight)(uRegionDepth)(NoOfFaces)); memset(m_faces.getRawData(), 0x00, m_faces.getNoOfElements() * sizeof(uint8_t)); //Note: hard-coded type uint8_t m_vecQuads[NegativeX].resize(m_regSizeInVoxels.getUpperCorner().getX() - m_regSizeInVoxels.getLowerCorner().getX() + 2); m_vecQuads[PositiveX].resize(m_regSizeInVoxels.getUpperCorner().getX() - m_regSizeInVoxels.getLowerCorner().getX() + 2); m_vecQuads[NegativeY].resize(m_regSizeInVoxels.getUpperCorner().getY() - m_regSizeInVoxels.getLowerCorner().getY() + 2); m_vecQuads[PositiveY].resize(m_regSizeInVoxels.getUpperCorner().getY() - m_regSizeInVoxels.getLowerCorner().getY() + 2); m_vecQuads[NegativeZ].resize(m_regSizeInVoxels.getUpperCorner().getZ() - m_regSizeInVoxels.getLowerCorner().getZ() + 2); m_vecQuads[PositiveZ].resize(m_regSizeInVoxels.getUpperCorner().getZ() - m_regSizeInVoxels.getLowerCorner().getZ() + 2); VolumeType::Sampler volumeSampler(m_volData); Quad quad; for(int32_t z = m_regSizeInVoxels.getLowerCorner().getZ(); z <= m_regSizeInVoxels.getUpperCorner().getZ() + 1; z++) { uint32_t regZ = z - m_regSizeInVoxels.getLowerCorner().getZ(); bool finalZ = (z == m_regSizeInVoxels.getUpperCorner().getZ() + 1); for(int32_t y = m_regSizeInVoxels.getLowerCorner().getY(); y <= m_regSizeInVoxels.getUpperCorner().getY() + 1; y++) { uint32_t regY = y - m_regSizeInVoxels.getLowerCorner().getY(); bool finalY = (y == m_regSizeInVoxels.getUpperCorner().getY() + 1); for(int32_t x = m_regSizeInVoxels.getLowerCorner().getX(); x <= m_regSizeInVoxels.getUpperCorner().getX() + 1; x++) { uint32_t regX = x - m_regSizeInVoxels.getLowerCorner().getX(); bool finalX = (x == m_regSizeInVoxels.getUpperCorner().getX() + 1); volumeSampler.setPosition(x,y,z); VoxelType currentVoxel = volumeSampler.getVoxel(); bool currentVoxelIsSolid = currentVoxel.getDensity() >= VoxelType::getThreshold(); VoxelType negXVoxel = volumeSampler.peekVoxel1nx0py0pz(); bool negXVoxelIsSolid = negXVoxel.getDensity() >= VoxelType::getThreshold(); if((currentVoxelIsSolid != negXVoxelIsSolid) && (finalY == false) && (finalZ == false)) { int material = (std::max)(currentVoxel.getMaterial(), negXVoxel.getMaterial()); // Check to ensure that when a voxel solid/non-solid change is right on a region border, the vertices are generated on the solid side of the region border if(((currentVoxelIsSolid > negXVoxelIsSolid) && finalX == false) || ((currentVoxelIsSolid < negXVoxelIsSolid) && regX != 0)) { uint32_t v0 = addVertex(regX - 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices); uint32_t v1 = addVertex(regX - 0.5f, regY - 0.5f, regZ + 0.5f, material, m_currentSliceVertices); uint32_t v2 = addVertex(regX - 0.5f, regY + 0.5f, regZ + 0.5f, material, m_currentSliceVertices); uint32_t v3 = addVertex(regX - 0.5f, regY + 0.5f, regZ - 0.5f, material, m_previousSliceVertices); if(currentVoxelIsSolid > negXVoxelIsSolid) { quad.vertices[0] = v0; quad.vertices[1] = v1; quad.vertices[2] = v2; quad.vertices[3] = v3; quad.material = material; m_vecQuads[NegativeX][regX].push_back(quad); } else { quad.vertices[0] = v0; quad.vertices[1] = v3; quad.vertices[2] = v2; quad.vertices[3] = v1; quad.material = material; m_vecQuads[PositiveX][regX].push_back(quad); } } } VoxelType negYVoxel = volumeSampler.peekVoxel0px1ny0pz(); bool negYVoxelIsSolid = negYVoxel.getDensity() >= VoxelType::getThreshold(); if((currentVoxelIsSolid != negYVoxelIsSolid) && (finalX == false) && (finalZ == false)) { int material = (std::max)(currentVoxel.getMaterial(),negYVoxel.getMaterial()); if(((currentVoxelIsSolid > negYVoxelIsSolid) && finalY == false) || ((currentVoxelIsSolid < negYVoxelIsSolid) && regY != 0)) { uint32_t v0 = addVertex(regX - 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices); uint32_t v1 = addVertex(regX - 0.5f, regY - 0.5f, regZ + 0.5f, material, m_currentSliceVertices); uint32_t v2 = addVertex(regX + 0.5f, regY - 0.5f, regZ + 0.5f, material, m_currentSliceVertices); uint32_t v3 = addVertex(regX + 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices); if(currentVoxelIsSolid > negYVoxelIsSolid) { //NOTE: For some reason y windong is opposite of X and Z. Investigate this... quad.vertices[0] = v0; quad.vertices[1] = v3; quad.vertices[2] = v2; quad.vertices[3] = v1; quad.material = material; m_vecQuads[NegativeY][regY].push_back(quad); } else { //NOTE: For some reason y windong is opposite of X and Z. Investigate this... quad.vertices[0] = v0; quad.vertices[1] = v1; quad.vertices[2] = v2; quad.vertices[3] = v3; quad.material = material; m_vecQuads[PositiveY][regY].push_back(quad); } } } VoxelType negZVoxel = volumeSampler.peekVoxel0px0py1nz(); bool negZVoxelIsSolid = negZVoxel.getDensity() >= VoxelType::getThreshold(); if((currentVoxelIsSolid != negZVoxelIsSolid) && (finalX == false) && (finalY == false)) { int material = (std::max)(currentVoxel.getMaterial(), negZVoxel.getMaterial()); if(((currentVoxelIsSolid > negZVoxelIsSolid) && finalZ == false) || ((currentVoxelIsSolid < negZVoxelIsSolid) && regZ != 0)) { uint32_t v0 = addVertex(regX - 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices); uint32_t v1 = addVertex(regX - 0.5f, regY + 0.5f, regZ - 0.5f, material, m_previousSliceVertices); uint32_t v2 = addVertex(regX + 0.5f, regY + 0.5f, regZ - 0.5f, material, m_previousSliceVertices); uint32_t v3 = addVertex(regX + 0.5f, regY - 0.5f, regZ - 0.5f, material, m_previousSliceVertices); if(currentVoxelIsSolid > negZVoxelIsSolid) { quad.vertices[0] = v0; quad.vertices[1] = v1; quad.vertices[2] = v2; quad.vertices[3] = v3; quad.material = material; m_vecQuads[NegativeZ][regZ].push_back(quad); } else { quad.vertices[0] = v0; quad.vertices[1] = v3; quad.vertices[2] = v2; quad.vertices[3] = v1; quad.material = material; m_vecQuads[PositiveZ][regZ].push_back(quad); } } } } } m_previousSliceVertices.swap(m_currentSliceVertices); memset(m_currentSliceVertices.getRawData(), 0xff, m_currentSliceVertices.getNoOfElements() * sizeof(IndexAndMaterial)); } for(uint32_t uFace = 0; uFace < NoOfFaces; uFace++) { std::vector< std::list >& vecListQuads = m_vecQuads[uFace]; for(uint32_t slice = 0; slice < vecListQuads.size(); slice++) { std::list& listQuads = vecListQuads[slice]; if(m_bMergeQuads) { while(decimate(listQuads)){} } std::list::iterator iterEnd = listQuads.end(); for(std::list::iterator quadIter = listQuads.begin(); quadIter != iterEnd; quadIter++) { Quad& quad = *quadIter; m_meshCurrent->addTriangleCubic(quad.vertices[0], quad.vertices[1],quad.vertices[2]); m_meshCurrent->addTriangleCubic(quad.vertices[0], quad.vertices[2],quad.vertices[3]); } } } m_meshCurrent->m_Region = m_regSizeInVoxels; m_meshCurrent->m_vecLodRecords.clear(); LodRecord lodRecord; lodRecord.beginIndex = 0; lodRecord.endIndex = m_meshCurrent->getNoOfIndices(); m_meshCurrent->m_vecLodRecords.push_back(lodRecord); } template< template class VolumeType, typename VoxelType> int32_t ImprovedCubicSurfaceExtractor::addVertex(float fX, float fY, float fZ, uint8_t uMaterialIn, Array<3, IndexAndMaterial>& existingVertices) { uint32_t uX = static_cast(fX + 0.75f); uint32_t uY = static_cast(fY + 0.75f); for(uint32_t ct = 0; ct < MaxQuadsSharingVertex; ct++) { IndexAndMaterial& rEntry = existingVertices[uX][uY][ct]; int32_t iIndex = static_cast(rEntry.iIndex); uint8_t uMaterial = static_cast(rEntry.uMaterial); if(iIndex == -1) { //No vertices matched and we've now hit an empty space. Fill it by creating a vertex. uint32_t temp = m_meshCurrent->addVertex(PositionMaterial(Vector3DFloat(fX, fY, fZ), uMaterialIn)); //Note - Slightly dodgy casting taking place here. No proper way to convert to 24-bit int though? //If problematic in future then fix IndexAndMaterial to contain variables rather than bitfield. rEntry.iIndex = temp; rEntry.uMaterial = uMaterialIn; return temp; } //If we have an existing vertex and the material matches then we can return it. if(uMaterial == uMaterialIn) { return iIndex; } } //If we exit the loop here then apparently all the slots were full but none of //them matched. I don't think this can happen so let's put an assert to make sure. assert(false); return 0; } template< template class VolumeType, typename VoxelType> bool ImprovedCubicSurfaceExtractor::decimate(std::list& quads) { bool bDidMerge = false; for(std::list::iterator outerIter = quads.begin(); outerIter != quads.end(); outerIter++) { std::list::iterator innerIter = outerIter; innerIter++; while(innerIter != quads.end()) { Quad& q1 = *outerIter; Quad& q2 = *innerIter; bool result = mergeQuads(q1,q2); if(result) { bDidMerge = true; innerIter = quads.erase(innerIter); } else { innerIter++; } } } return bDidMerge; } template< template class VolumeType, typename VoxelType> bool ImprovedCubicSurfaceExtractor::mergeQuads(Quad& q1, Quad& q2) { if(q1.material == q2.material) { if((q1.vertices[0] == q2.vertices[1]) && ((q1.vertices[3] == q2.vertices[2]))) { q1.vertices[0] = q2.vertices[0]; q1.vertices[3] = q2.vertices[3]; return true; } else if((q1.vertices[3] == q2.vertices[0]) && ((q1.vertices[2] == q2.vertices[1]))) { q1.vertices[3] = q2.vertices[3]; q1.vertices[2] = q2.vertices[2]; return true; } else if((q1.vertices[1] == q2.vertices[0]) && ((q1.vertices[2] == q2.vertices[3]))) { q1.vertices[1] = q2.vertices[1]; q1.vertices[2] = q2.vertices[2]; return true; } else if((q1.vertices[0] == q2.vertices[3]) && ((q1.vertices[1] == q2.vertices[2]))) { q1.vertices[0] = q2.vertices[0]; q1.vertices[1] = q2.vertices[1]; return true; } } return false; } }