#include "SurfacePatch.h" #include "Constants.h" #include "SurfaceVertex.h" #include "SurfaceTriangle.h" #include "SurfaceEdge.h" #include "OgreLogManager.h" #include "OgreStringConverter.h" #include namespace Ogre { SurfacePatch::SurfacePatch() { m_listVertices.clear(); m_listTriangles.clear(); m_listEdges.clear(); m_uTrianglesAdded = 0; m_uVerticesAdded = 0; vertexIndices = 0; //beginDefinition(); //FIXME - we shouldn't really be calling this from the constructor. } SurfacePatch::~SurfacePatch() { } void SurfacePatch::beginDefinition(void) { } void SurfacePatch::endDefinition(void) { //LogManager::getSingleton().logMessage("No of triangles added = " + StringConverter::toString(m_uTrianglesAdded)); //LogManager::getSingleton().logMessage("No of triangles present = " + StringConverter::toString(m_listTriangles.size())); //LogManager::getSingleton().logMessage("No of vertices added = " + StringConverter::toString(m_uVerticesAdded)); //LogManager::getSingleton().logMessage("No of vertices present = " + StringConverter::toString(m_setVertices.size())); //computeOtherHalfEdges(); } void SurfacePatch::addTriangle(const SurfaceVertex& v0,const SurfaceVertex& v1,const SurfaceVertex& v2) { /*if(v0.getPosition().x > 4) return; if(v0.getPosition().y > 4) return; if(v1.getPosition().x > 4) return; if(v1.getPosition().y > 4) return; if(v2.getPosition().x > 4) return; if(v2.getPosition().y > 4) return;*/ m_uTrianglesAdded++; m_uVerticesAdded += 3; SurfaceVertexIterator v0Iter = findOrAddVertex(v0); SurfaceVertexIterator v1Iter = findOrAddVertex(v1); SurfaceVertexIterator v2Iter = findOrAddVertex(v2); SurfaceEdgeIterator v0v1Iter = findOrAddEdge(v0Iter,v1Iter); SurfaceEdgeIterator v1v2Iter = findOrAddEdge(v1Iter,v2Iter); SurfaceEdgeIterator v2v0Iter = findOrAddEdge(v2Iter,v0Iter); v0Iter->setEdge(v0v1Iter); v1Iter->setEdge(v1v2Iter); v2Iter->setEdge(v2v0Iter); v0v1Iter->setNextHalfEdge(v1v2Iter); v1v2Iter->setNextHalfEdge(v2v0Iter); v2v0Iter->setNextHalfEdge(v0v1Iter); v0v1Iter->setPreviousHalfEdge(v2v0Iter); v1v2Iter->setPreviousHalfEdge(v0v1Iter); v2v0Iter->setPreviousHalfEdge(v1v2Iter); SurfaceTriangle triangle; triangle.setEdge(v0v1Iter); //m_listTriangles.push_back(triangle); //SurfaceTriangleIterator iterTriangle = m_listTriangles.end(); //iterTriangle--; SurfaceTriangleIterator iterTriangle = m_listTriangles.insert(triangle).first; v0v1Iter->triangle = iterTriangle; v1v2Iter->triangle = iterTriangle; v2v0Iter->triangle = iterTriangle; } SurfaceVertexIterator SurfacePatch::findOrAddVertex(const SurfaceVertex& vertex) { /*SurfaceVertexIterator vertexIter = find(m_listVertices.begin(), m_listVertices.end(), vertex); if(vertexIter == m_listVertices.end()) { //LogManager::getSingleton().logMessage("Adding Vertex " + StringConverter::toString(v0.position.x) + "," + StringConverter::toString(v0.position.y) + "," + StringConverter::toString(v0.position.z)); m_listVertices.push_back(vertex); vertexIter = m_listVertices.end(); vertexIter--; } return vertexIter;*/ return m_listVertices.insert(vertex).first; } SurfaceEdgeIterator SurfacePatch::findEdge(const SurfaceVertexIterator& source, const SurfaceVertexIterator& target) { /*LogManager::getSingleton().logMessage("In findEdge()"); LogManager::getSingleton().logMessage("Input: source = " + source->toString() + " target = " + target->toString()); for(SurfaceEdgeIterator edgeIter = m_listEdges.begin(); edgeIter != m_listEdges.end(); ++edgeIter) { LogManager::getSingleton().logMessage("Current: source = " + edgeIter->getSource()->toString() + " target = " + edgeIter->getTarget()->toString()); if((edgeIter->getTarget() == target) && (edgeIter->getSource() == source)) { return edgeIter; } } //Not found - return end. return m_listEdges.end();*/ SurfaceEdge edgeToFind(target,source); return m_listEdges.find(edgeToFind); } SurfaceEdgeIterator SurfacePatch::findOrAddEdge(const SurfaceVertexIterator& source, const SurfaceVertexIterator& target) { SurfaceEdge edge(target,source); std::pair insertionResult = m_listEdges.insert(edge); if(insertionResult.second == false) { //Edge was already in there, so other edge is too. return insertionResult.first; } SurfaceEdgeIterator edgeIter = insertionResult.first; SurfaceEdge otherEdge(source, target); SurfaceEdgeIterator otherEdgeIter = m_listEdges.insert(otherEdge).first; edgeIter->pairWithOtherHalfEdge(otherEdgeIter); otherEdgeIter->pairWithOtherHalfEdge(edgeIter); return edgeIter; } void SurfacePatch::computeNormalsFromVolume(VolumeIterator volIter) { //LogManager::getSingleton().logMessage("In SurfacePatch::computeNormalsFromVolume"); for(SurfaceVertexIterator vertexIter = m_listVertices.begin(); vertexIter != m_listVertices.end(); ++vertexIter) { //LogManager::getSingleton().logMessage("In Loop"); const float posX = (vertexIter->getPosition().x + m_v3dOffset.x) / 2.0f; const float posY = (vertexIter->getPosition().y + m_v3dOffset.y) / 2.0f; const float posZ = (vertexIter->getPosition().z + m_v3dOffset.z) / 2.0f; const uint floorX = static_cast(posX); const uint floorY = static_cast(posY); const uint floorZ = static_cast(posZ); NormalGenerationMethod normalGenerationMethod = CENTRAL_DIFFERENCE; switch(normalGenerationMethod) { case SIMPLE: { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const uchar uFloor = volIter.getVoxel() > 0 ? 1 : 0; if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { uchar uCeil = volIter.peekVoxel1px0py0pz() > 0 ? 1 : 0; vertexIter->setNormal(Vector3(uFloor - uCeil,0.0,0.0)); } else if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { uchar uCeil = volIter.peekVoxel0px1py0pz() > 0 ? 1 : 0; vertexIter->setNormal(Vector3(0.0,uFloor - uCeil,0.0)); } else if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { uchar uCeil = volIter.peekVoxel0px0py1pz() > 0 ? 1 : 0; vertexIter->setNormal(Vector3(0.0, 0.0,uFloor - uCeil)); } break; } case CENTRAL_DIFFERENCE: { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3 gradFloor = volIter.getCentralDifferenceGradient(); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3 gradCeil = volIter.getCentralDifferenceGradient(); vertexIter->setNormal((gradFloor + gradCeil) * -1.0); break; } case SOBEL: { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ)); const Vector3 gradFloor = volIter.getSobelGradient(); if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX+1.0),static_cast(posY),static_cast(posZ)); } if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY+1.0),static_cast(posZ)); } if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5 { volIter.setPosition(static_cast(posX),static_cast(posY),static_cast(posZ+1.0)); } const Vector3 gradCeil = volIter.getSobelGradient(); vertexIter->setNormal((gradFloor + gradCeil) * -1.0); break; } } } } void SurfacePatch::getVertexAndIndexData(std::vector& vertexData, std::vector& indexData) { vertexData.clear(); indexData.clear(); vertexData.resize(m_listVertices.size()); std::copy(m_listVertices.begin(), m_listVertices.end(), vertexData.begin()); /*LogManager::getSingleton().logMessage("----------Vertex Data----------"); for(std::vector::iterator vertexIter = vertexData.begin(); vertexIter != vertexData.end(); ++vertexIter) { LogManager::getSingleton().logMessage(StringConverter::toString(vertexIter->getPosition().x) + "," + StringConverter::toString(vertexIter->getPosition().y) + "," + StringConverter::toString(vertexIter->getPosition().z)); } LogManager::getSingleton().logMessage("----------End Vertex Data----------");*/ for(SurfaceTriangleIterator iterTriangles = m_listTriangles.begin(); iterTriangles != m_listTriangles.end(); ++iterTriangles) { //LogManager::getSingleton().logMessage("Begin Triangle:"); std::vector::iterator iterVertex; SurfaceEdgeIterator edgeIter; edgeIter = iterTriangles->getEdge(); //LogManager::getSingleton().logMessage("Edge Target " + StringConverter::toString(edgeIter->target->position.x) + "," + StringConverter::toString(edgeIter->target->position.y) + "," + StringConverter::toString(edgeIter->target->position.z)); iterVertex = find(vertexData.begin(), vertexData.end(), *(edgeIter->getTarget())); //LogManager::getSingleton().logMessage(""); //LogManager::getSingleton().logMessage(" " + StringConverter::toString(iterVertex->getPosition().x) + "," + StringConverter::toString(iterVertex->getPosition().y) + "," + StringConverter::toString(iterVertex->getPosition().z)); indexData.push_back(iterVertex - vertexData.begin()); edgeIter = edgeIter->getNextHalfEdge(); iterVertex = find(vertexData.begin(), vertexData.end(), *(edgeIter->getTarget())); //LogManager::getSingleton().logMessage(" " + StringConverter::toString(iterVertex->getPosition().x) + "," + StringConverter::toString(iterVertex->getPosition().y) + "," + StringConverter::toString(iterVertex->getPosition().z)); indexData.push_back(iterVertex - vertexData.begin()); edgeIter = edgeIter->getNextHalfEdge(); iterVertex = find(vertexData.begin(), vertexData.end(), *(edgeIter->getTarget())); //LogManager::getSingleton().logMessage(" " + StringConverter::toString(iterVertex->getPosition().x) + "," + StringConverter::toString(iterVertex->getPosition().y) + "," + StringConverter::toString(iterVertex->getPosition().z)); indexData.push_back(iterVertex - vertexData.begin()); //LogManager::getSingleton().logMessage("End Triangle"); } } bool SurfacePatch::canRemoveVertexFrom(SurfaceVertexIterator vertexIter, std::list listConnectedIter, bool isEdge) { bool allXMatch = true; bool allYMatch = true; bool allZMatch = true; bool allNormalsMatch = true; bool twoEdgesMatch = true; for(std::list::iterator connectedIter = listConnectedIter.begin(); connectedIter != listConnectedIter.end(); ++connectedIter) { if((*connectedIter)->getPosition().x != vertexIter->getPosition().x) { allXMatch = false; } if((*connectedIter)->getPosition().y != vertexIter->getPosition().y) { allYMatch = false; } if((*connectedIter)->getPosition().z != vertexIter->getPosition().z) { allZMatch = false; } if((*connectedIter)->getNormal().dotProduct(vertexIter->getNormal()) < 0.99) { return false; } } if(isEdge) { SurfaceVertexIterator firstExtreme = *(listConnectedIter.begin()); SurfaceVertexIterator secondExtreme = *(--listConnectedIter.end()); bool edgeXMatch = (firstExtreme->getPosition().x == vertexIter->getPosition().x) && (secondExtreme->getPosition().x == vertexIter->getPosition().x); bool edgeYMatch = (firstExtreme->getPosition().y == vertexIter->getPosition().y) && (secondExtreme->getPosition().y == vertexIter->getPosition().y); bool edgeZMatch = (firstExtreme->getPosition().z == vertexIter->getPosition().z) && (secondExtreme->getPosition().z == vertexIter->getPosition().z); twoEdgesMatch = ((edgeXMatch&&edgeYMatch) || (edgeXMatch&&edgeZMatch) || (edgeYMatch&&edgeZMatch)); } return (allXMatch || allYMatch || allZMatch) && (twoEdgesMatch); } std::list SurfacePatch::findConnectedVertices(SurfaceVertexIterator vertexIter, bool& isEdge) { isEdge = false; std::list result; //LogManager::getSingleton().logMessage("findConnectedVertices " + vertexIter->toString()); SurfaceEdgeIterator firstEdge = vertexIter->getEdge(); SurfaceEdgeIterator nextEdge = firstEdge; SurfaceEdgeIterator previousEdge = firstEdge; int ct = 0; do { ct++; //LogManager::getSingleton().logMessage("ct = " + StringConverter::toString(ct)); if(ct > 100) { LogManager::getSingleton().logMessage("ct too big!!! Aborting decimation"); exit(1); } result.push_back(nextEdge->getTarget()); previousEdge = nextEdge; nextEdge = nextEdge->getPreviousHalfEdge()->getOtherHalfEdge(); }while((nextEdge != firstEdge) && (nextEdge != previousEdge)); if(nextEdge == previousEdge) { //LogManager::getSingleton().logMessage("Is edge"); //In this case vertexIter is on an edge/ isEdge = true; nextEdge = firstEdge; previousEdge = firstEdge; previousEdge = nextEdge; nextEdge = nextEdge->getOtherHalfEdge()->getNextHalfEdge(); int ct2 = 0; do { ct2++; //LogManager::getSingleton().logMessage("ct2 = " + StringConverter::toString(ct2)); if(ct2 > 100) { LogManager::getSingleton().logMessage("ct2 too big!!! Aborting decimation"); exit(1); } result.push_front(nextEdge->getTarget()); previousEdge = nextEdge; nextEdge = nextEdge->getOtherHalfEdge()->getNextHalfEdge(); }while(nextEdge != previousEdge); } //LogManager::getSingleton().logMessage("Done find"); return result; } uint SurfacePatch::decimate(void) { uint uNoRemoved = 0; //LogManager::getSingleton().logMessage("\n\nPerforming decimation"); //LogManager::getSingleton().logMessage("No of triangles at start = " + StringConverter::toString(m_listTriangles.size())); //LogManager::getSingleton().logMessage("No of edges at start = " + StringConverter::toString(m_listEdges.size())); //int fixed = 0; //int movable = 0; std::vector listVertexIterators; //listVertexIterators.resize(m_listVertices.size()); for(SurfaceVertexIterator vertexIter = m_listVertices.begin(); vertexIter != m_listVertices.end(); ++vertexIter) { listVertexIterators.push_back(vertexIter); } //random_shuffle(listVertexIterators.begin(),listVertexIterators.end()); for(std::vector::iterator vertexIterIter = listVertexIterators.begin(); vertexIterIter != listVertexIterators.end(); ++vertexIterIter) //for(SurfaceVertexIterator vertexIter = m_listVertices.begin(); vertexIter != m_listVertices.end(); ++vertexIter) { //LogManager::getSingleton().logMessage("Examining vertex " + vertexIter->toString()); SurfaceVertexIterator vertexIter = *vertexIterIter; bool isEdge; std::list listConnectedVertices = findConnectedVertices(vertexIter,isEdge); listConnectedVertices.remove(vertexIter); listConnectedVertices.unique(); /*LogManager::getSingleton().logMessage("No of connected vertices = " + StringConverter::toString(listConnectedVertices.size())); for(std::list::iterator iter = listConnectedVertices.begin(); iter != listConnectedVertices.end(); ++iter) { LogManager::getSingleton().logMessage(" Connected vertex = " + (*iter)->toString()); }*/ if(canRemoveVertexFrom(vertexIter, listConnectedVertices, isEdge) == false) { continue; } if(isPolygonConvex(listConnectedVertices, vertexIter->getNormal()) == false) { continue; } //LogManager::getSingleton().logMessage("Vertex can be removed"); //std::list edgesToRemove; for(std::list::iterator iter = listConnectedVertices.begin(); iter != listConnectedVertices.end(); ++iter) { SurfaceEdgeIterator edgeToDelete = findEdge(vertexIter, *iter); /*if(edgeToDelete == m_listEdges.end()) { LogManager::getSingleton().logMessage("Error - Failed to find"); }*/ SurfaceEdgeIterator otherEdgeToDelete = edgeToDelete->getOtherHalfEdge(); if(edgeToDelete->getNextHalfEdge() != edgeToDelete->getOtherHalfEdge()) { m_listTriangles.erase(edgeToDelete->triangle); } //LogManager::getSingleton().logMessage("Removing edge " + edgeToDelete->toString()); m_listEdges.erase(edgeToDelete); //LogManager::getSingleton().logMessage("Removing edge " + otherEdgeToDelete->toString()); m_listEdges.erase(otherEdgeToDelete); //edgesToRemove.push_back(edgeToDelete); //edgesToRemove.push_back(otherEdgeToDelete); } /*LogManager::getSingleton().logMessage("Now removing edges"); for(std::list::iterator iter = edgesToRemove.begin(); iter != edgesToRemove.end(); ++iter) { m_listEdges.erase(*iter); }*/ //LogManager::getSingleton().logMessage("Removing vertex " + vertexIter->toString()); m_listVertices.erase(vertexIter); //Now triangulate... //LogManager::getSingleton().logMessage("Doing triangulation"); triangulate(listConnectedVertices); ++uNoRemoved; //break; } //LogManager::getSingleton().logMessage("Fixed = " + StringConverter::toString(fixed) + " Movable = " + StringConverter::toString(movable)); //LogManager::getSingleton().logMessage("Done decimation"); //LogManager::getSingleton().logMessage("No of triangles at end = " + StringConverter::toString(m_listTriangles.size())); /*std::vector vertexDataTemp; std::vector indexDataTemp; getVertexAndIndexData(vertexDataTemp, indexDataTemp);*/ return uNoRemoved; } void SurfacePatch::triangulate(std::list listVertices) { std::list::iterator v0IterIter = listVertices.begin(); std::list::iterator v1IterIter = listVertices.begin(); std::list::iterator v2IterIter = listVertices.begin(); ++v1IterIter; ++v2IterIter; ++v2IterIter; while(v2IterIter != listVertices.end()) { SurfaceVertexIterator v0Iter = *v0IterIter; SurfaceVertexIterator v1Iter = *v1IterIter; SurfaceVertexIterator v2Iter = *v2IterIter; addTriangle(*v0Iter, *v1Iter, *v2Iter); ++v1IterIter; ++v2IterIter; } } bool SurfacePatch::isPolygonConvex(std::list listVertices, Vector3 normal) { std::list::iterator v0IterIter = listVertices.begin(); std::list::iterator v1IterIter = listVertices.begin(); std::list::iterator v2IterIter = listVertices.begin(); ++v1IterIter; ++v2IterIter; ++v2IterIter; while(v2IterIter != listVertices.end()) { SurfaceVertexIterator v0Iter = *v0IterIter; SurfaceVertexIterator v1Iter = *v1IterIter; SurfaceVertexIterator v2Iter = *v2IterIter; Vector3 v1tov0(v0Iter->getPosition().toOgreVector3() - v1Iter->getPosition().toOgreVector3()); Vector3 v1tov2(v2Iter->getPosition().toOgreVector3() - v1Iter->getPosition().toOgreVector3()); Vector3 cross = (v1tov2).crossProduct(v1tov0); cross.normalise(); //LogManager::getSingleton().logMessage("Cross = " + StringConverter::toString(cross)); if(cross.dotProduct(normal) < 0.99) { return false; } ++v1IterIter; ++v2IterIter; } return true; } }