731 lines
31 KiB
C++
731 lines
31 KiB
C++
/*******************************************************************************
|
|
Copyright (c) 2005-2009 David Williams
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any damages
|
|
arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
|
|
3. This notice may not be removed or altered from any source
|
|
distribution.
|
|
*******************************************************************************/
|
|
|
|
#include "Array.h"
|
|
#include "MaterialDensityPair.h"
|
|
#include "SurfaceMesh.h"
|
|
#include "PolyVoxImpl/MarchingCubesTables.h"
|
|
#include "VertexTypes.h"
|
|
|
|
namespace PolyVox
|
|
{
|
|
template <typename VoxelType>
|
|
SurfaceExtractor<VoxelType>::SurfaceExtractor(Volume<VoxelType>* volData, Region region, SurfaceMesh<PositionMaterialNormal>* result)
|
|
:m_volData(volData)
|
|
,m_sampVolume(volData)
|
|
,m_regSizeInVoxels(region)
|
|
,m_meshCurrent(result)
|
|
{
|
|
//m_regSizeInVoxels.cropTo(m_volData->getEnclosingRegion());
|
|
m_regSizeInCells = m_regSizeInVoxels;
|
|
m_regSizeInCells.setUpperCorner(m_regSizeInCells.getUpperCorner() - Vector3DInt32(1,1,1));
|
|
|
|
m_meshCurrent->clear();
|
|
}
|
|
|
|
template <typename VoxelType>
|
|
void SurfaceExtractor<VoxelType>::execute()
|
|
{
|
|
uint32_t uArrayWidth = m_regSizeInVoxels.getUpperCorner().getX() - m_regSizeInVoxels.getLowerCorner().getX() + 1;
|
|
uint32_t uArrayHeight = m_regSizeInVoxels.getUpperCorner().getY() - m_regSizeInVoxels.getLowerCorner().getY() + 1;
|
|
uint32_t arraySizes[2]= {uArrayWidth, uArrayHeight}; // Array dimensions
|
|
|
|
//For edge indices
|
|
Array2DInt32 m_pPreviousVertexIndicesX(arraySizes);
|
|
Array2DInt32 m_pPreviousVertexIndicesY(arraySizes);
|
|
Array2DInt32 m_pPreviousVertexIndicesZ(arraySizes);
|
|
Array2DInt32 m_pCurrentVertexIndicesX(arraySizes);
|
|
Array2DInt32 m_pCurrentVertexIndicesY(arraySizes);
|
|
Array2DInt32 m_pCurrentVertexIndicesZ(arraySizes);
|
|
|
|
Array2DUint8 pPreviousBitmask(arraySizes);
|
|
Array2DUint8 pCurrentBitmask(arraySizes);
|
|
|
|
//Create a region corresponding to the first slice
|
|
m_regSlicePrevious = m_regSizeInVoxels;
|
|
Vector3DInt32 v3dUpperCorner = m_regSlicePrevious.getUpperCorner();
|
|
v3dUpperCorner.setZ(m_regSlicePrevious.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick.
|
|
m_regSlicePrevious.setUpperCorner(v3dUpperCorner);
|
|
m_regSliceCurrent = m_regSlicePrevious;
|
|
|
|
uint32_t uNoOfNonEmptyCellsForSlice0 = 0;
|
|
uint32_t uNoOfNonEmptyCellsForSlice1 = 0;
|
|
|
|
//Process the first slice (previous slice not available)
|
|
computeBitmaskForSlice<false>(pPreviousBitmask, pCurrentBitmask);
|
|
uNoOfNonEmptyCellsForSlice1 = m_uNoOfOccupiedCells;
|
|
|
|
if(uNoOfNonEmptyCellsForSlice1 != 0)
|
|
{
|
|
memset(m_pCurrentVertexIndicesX.getRawData(), 0xff, m_pCurrentVertexIndicesX.getNoOfElements() * 4);
|
|
memset(m_pCurrentVertexIndicesY.getRawData(), 0xff, m_pCurrentVertexIndicesY.getNoOfElements() * 4);
|
|
memset(m_pCurrentVertexIndicesZ.getRawData(), 0xff, m_pCurrentVertexIndicesZ.getNoOfElements() * 4);
|
|
generateVerticesForSlice(pCurrentBitmask, m_pCurrentVertexIndicesX, m_pCurrentVertexIndicesY, m_pCurrentVertexIndicesZ);
|
|
}
|
|
|
|
std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1);
|
|
pPreviousBitmask.swap(pCurrentBitmask);
|
|
m_pPreviousVertexIndicesX.swap(m_pCurrentVertexIndicesX);
|
|
m_pPreviousVertexIndicesY.swap(m_pCurrentVertexIndicesY);
|
|
m_pPreviousVertexIndicesZ.swap(m_pCurrentVertexIndicesZ);
|
|
|
|
m_regSlicePrevious = m_regSliceCurrent;
|
|
m_regSliceCurrent.shift(Vector3DInt32(0,0,1));
|
|
|
|
//Process the other slices (previous slice is available)
|
|
for(int32_t uSlice = 1; uSlice <= m_regSizeInVoxels.getUpperCorner().getZ() - m_regSizeInVoxels.getLowerCorner().getZ(); uSlice++)
|
|
{
|
|
computeBitmaskForSlice<true>(pPreviousBitmask, pCurrentBitmask);
|
|
uNoOfNonEmptyCellsForSlice1 = m_uNoOfOccupiedCells;
|
|
|
|
if(uNoOfNonEmptyCellsForSlice1 != 0)
|
|
{
|
|
memset(m_pCurrentVertexIndicesX.getRawData(), 0xff, m_pCurrentVertexIndicesX.getNoOfElements() * 4);
|
|
memset(m_pCurrentVertexIndicesY.getRawData(), 0xff, m_pCurrentVertexIndicesY.getNoOfElements() * 4);
|
|
memset(m_pCurrentVertexIndicesZ.getRawData(), 0xff, m_pCurrentVertexIndicesZ.getNoOfElements() * 4);
|
|
generateVerticesForSlice(pCurrentBitmask, m_pCurrentVertexIndicesX, m_pCurrentVertexIndicesY, m_pCurrentVertexIndicesZ);
|
|
}
|
|
|
|
if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0))
|
|
{
|
|
generateIndicesForSlice(pPreviousBitmask, m_pPreviousVertexIndicesX, m_pPreviousVertexIndicesY, m_pPreviousVertexIndicesZ, m_pCurrentVertexIndicesX, m_pCurrentVertexIndicesY, m_pCurrentVertexIndicesZ);
|
|
}
|
|
|
|
std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1);
|
|
pPreviousBitmask.swap(pCurrentBitmask);
|
|
m_pPreviousVertexIndicesX.swap(m_pCurrentVertexIndicesX);
|
|
m_pPreviousVertexIndicesY.swap(m_pCurrentVertexIndicesY);
|
|
m_pPreviousVertexIndicesZ.swap(m_pCurrentVertexIndicesZ);
|
|
|
|
m_regSlicePrevious = m_regSliceCurrent;
|
|
m_regSliceCurrent.shift(Vector3DInt32(0,0,1));
|
|
}
|
|
|
|
m_meshCurrent->m_Region = m_regSizeInVoxels;
|
|
|
|
m_meshCurrent->m_vecLodRecords.clear();
|
|
LodRecord lodRecord;
|
|
lodRecord.beginIndex = 0;
|
|
lodRecord.endIndex = m_meshCurrent->getNoOfIndices();
|
|
m_meshCurrent->m_vecLodRecords.push_back(lodRecord);
|
|
}
|
|
|
|
template<typename VoxelType>
|
|
template<bool isPrevZAvail>
|
|
uint32_t SurfaceExtractor<VoxelType>::computeBitmaskForSlice(const Array2DUint8& pPreviousBitmask, Array2DUint8& pCurrentBitmask)
|
|
{
|
|
m_uNoOfOccupiedCells = 0;
|
|
|
|
const int32_t iMaxXVolSpace = m_regSliceCurrent.getUpperCorner().getX();
|
|
const int32_t iMaxYVolSpace = m_regSliceCurrent.getUpperCorner().getY();
|
|
|
|
iZVolSpace = m_regSliceCurrent.getLowerCorner().getZ();
|
|
uZRegSpace = iZVolSpace - m_regSizeInVoxels.getLowerCorner().getZ();
|
|
|
|
//Process the lower left corner
|
|
iYVolSpace = m_regSliceCurrent.getLowerCorner().getY();
|
|
iXVolSpace = m_regSliceCurrent.getLowerCorner().getX();
|
|
|
|
uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX();
|
|
uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY();
|
|
|
|
m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace);
|
|
computeBitmaskForCell<false, false, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask);
|
|
|
|
//Process the edge where x is minimal.
|
|
iXVolSpace = m_regSliceCurrent.getLowerCorner().getX();
|
|
m_sampVolume.setPosition(iXVolSpace, m_regSliceCurrent.getLowerCorner().getY(), iZVolSpace);
|
|
for(iYVolSpace = m_regSliceCurrent.getLowerCorner().getY() + 1; iYVolSpace <= iMaxYVolSpace; iYVolSpace++)
|
|
{
|
|
uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX();
|
|
uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY();
|
|
|
|
m_sampVolume.movePositiveY();
|
|
|
|
computeBitmaskForCell<false, true, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask);
|
|
}
|
|
|
|
//Process the edge where y is minimal.
|
|
iYVolSpace = m_regSliceCurrent.getLowerCorner().getY();
|
|
m_sampVolume.setPosition(m_regSliceCurrent.getLowerCorner().getX(), iYVolSpace, iZVolSpace);
|
|
for(iXVolSpace = m_regSliceCurrent.getLowerCorner().getX() + 1; iXVolSpace <= iMaxXVolSpace; iXVolSpace++)
|
|
{
|
|
uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX();
|
|
uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY();
|
|
|
|
m_sampVolume.movePositiveX();
|
|
|
|
computeBitmaskForCell<true, false, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask);
|
|
}
|
|
|
|
//Process all remaining elemnents of the slice. In this case, previous x and y values are always available
|
|
for(iYVolSpace = m_regSliceCurrent.getLowerCorner().getY() + 1; iYVolSpace <= iMaxYVolSpace; iYVolSpace++)
|
|
{
|
|
m_sampVolume.setPosition(m_regSliceCurrent.getLowerCorner().getX(), iYVolSpace, iZVolSpace);
|
|
for(iXVolSpace = m_regSliceCurrent.getLowerCorner().getX() + 1; iXVolSpace <= iMaxXVolSpace; iXVolSpace++)
|
|
{
|
|
uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX();
|
|
uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY();
|
|
|
|
m_sampVolume.movePositiveX();
|
|
|
|
computeBitmaskForCell<true, true, isPrevZAvail>(pPreviousBitmask, pCurrentBitmask);
|
|
}
|
|
}
|
|
|
|
return m_uNoOfOccupiedCells;
|
|
}
|
|
|
|
template<typename VoxelType>
|
|
template<bool isPrevXAvail, bool isPrevYAvail, bool isPrevZAvail>
|
|
void SurfaceExtractor<VoxelType>::computeBitmaskForCell(const Array2DUint8& pPreviousBitmask, Array2DUint8& pCurrentBitmask)
|
|
{
|
|
uint8_t iCubeIndex = 0;
|
|
|
|
VoxelType v000;
|
|
VoxelType v100;
|
|
VoxelType v010;
|
|
VoxelType v110;
|
|
VoxelType v001;
|
|
VoxelType v101;
|
|
VoxelType v011;
|
|
VoxelType v111;
|
|
|
|
if(isPrevZAvail)
|
|
{
|
|
if(isPrevYAvail)
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = pPreviousBitmask[uXRegSpace][uYRegSpace];
|
|
iPreviousCubeIndexZ >>= 4;
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = pCurrentBitmask[uXRegSpace][uYRegSpace-1];
|
|
iPreviousCubeIndexY &= 192; //192 = 128 + 64
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = pCurrentBitmask[uXRegSpace-1][uYRegSpace];
|
|
iPreviousCubeIndexX &= 128;
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
|
|
|
if (v111.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
v011 = m_sampVolume.peekVoxel0px1py1pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = pPreviousBitmask[uXRegSpace][uYRegSpace];
|
|
iPreviousCubeIndexZ >>= 4;
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = pCurrentBitmask[uXRegSpace][uYRegSpace-1];
|
|
iPreviousCubeIndexY &= 192; //192 = 128 + 64
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ;
|
|
|
|
if (v011.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 64;
|
|
if (v111.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
else //previous Y not available
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
v101 = m_sampVolume.peekVoxel1px0py1pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = pPreviousBitmask[uXRegSpace][uYRegSpace];
|
|
iPreviousCubeIndexZ >>= 4;
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = pCurrentBitmask[uXRegSpace-1][uYRegSpace];
|
|
iPreviousCubeIndexX &= 160; //160 = 128+32
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ;
|
|
|
|
if (v101.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 32;
|
|
if (v111.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
v001 = m_sampVolume.peekVoxel0px0py1pz();
|
|
v101 = m_sampVolume.peekVoxel1px0py1pz();
|
|
v011 = m_sampVolume.peekVoxel0px1py1pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//z
|
|
uint8_t iPreviousCubeIndexZ = pPreviousBitmask[uXRegSpace][uYRegSpace];
|
|
iCubeIndex = iPreviousCubeIndexZ >> 4;
|
|
|
|
if (v001.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 16;
|
|
if (v101.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 32;
|
|
if (v011.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 64;
|
|
if (v111.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
}
|
|
else //previous Z not available
|
|
{
|
|
if(isPrevYAvail)
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
v110 = m_sampVolume.peekVoxel1px1py0pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = pCurrentBitmask[uXRegSpace][uYRegSpace-1];
|
|
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = pCurrentBitmask[uXRegSpace-1][uYRegSpace];
|
|
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY;
|
|
|
|
if (v110.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 8;
|
|
if (v111.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
v010 = m_sampVolume.peekVoxel0px1py0pz();
|
|
v110 = m_sampVolume.peekVoxel1px1py0pz();
|
|
|
|
v011 = m_sampVolume.peekVoxel0px1py1pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//y
|
|
uint8_t iPreviousCubeIndexY = pCurrentBitmask[uXRegSpace][uYRegSpace-1];
|
|
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
|
|
iPreviousCubeIndexY >>= 2;
|
|
|
|
iCubeIndex = iPreviousCubeIndexY;
|
|
|
|
if (v010.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 4;
|
|
if (v110.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 8;
|
|
if (v011.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 64;
|
|
if (v111.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
else //previous Y not available
|
|
{
|
|
if(isPrevXAvail)
|
|
{
|
|
v100 = m_sampVolume.peekVoxel1px0py0pz();
|
|
v110 = m_sampVolume.peekVoxel1px1py0pz();
|
|
|
|
v101 = m_sampVolume.peekVoxel1px0py1pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
//x
|
|
uint8_t iPreviousCubeIndexX = pCurrentBitmask[uXRegSpace-1][uYRegSpace];
|
|
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
|
|
iPreviousCubeIndexX >>= 1;
|
|
|
|
iCubeIndex = iPreviousCubeIndexX;
|
|
|
|
if (v100.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 2;
|
|
if (v110.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 8;
|
|
if (v101.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 32;
|
|
if (v111.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 128;
|
|
}
|
|
else //previous X not available
|
|
{
|
|
v000 = m_sampVolume.getVoxel();
|
|
v100 = m_sampVolume.peekVoxel1px0py0pz();
|
|
v010 = m_sampVolume.peekVoxel0px1py0pz();
|
|
v110 = m_sampVolume.peekVoxel1px1py0pz();
|
|
|
|
v001 = m_sampVolume.peekVoxel0px0py1pz();
|
|
v101 = m_sampVolume.peekVoxel1px0py1pz();
|
|
v011 = m_sampVolume.peekVoxel0px1py1pz();
|
|
v111 = m_sampVolume.peekVoxel1px1py1pz();
|
|
|
|
if (v000.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 1;
|
|
if (v100.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 2;
|
|
if (v010.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 4;
|
|
if (v110.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 8;
|
|
if (v001.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 16;
|
|
if (v101.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 32;
|
|
if (v011.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 64;
|
|
if (v111.getDensity() < VoxelType::getThreshold()) iCubeIndex |= 128;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Save the bitmask
|
|
pCurrentBitmask[uXRegSpace][iYVolSpace- m_regSizeInVoxels.getLowerCorner().getY()] = iCubeIndex;
|
|
|
|
if(edgeTable[iCubeIndex] != 0)
|
|
{
|
|
++m_uNoOfOccupiedCells;
|
|
}
|
|
}
|
|
|
|
template <typename VoxelType>
|
|
void SurfaceExtractor<VoxelType>::generateVerticesForSlice(const Array2DUint8& pCurrentBitmask,
|
|
Array2DInt32& m_pCurrentVertexIndicesX,
|
|
Array2DInt32& m_pCurrentVertexIndicesY,
|
|
Array2DInt32& m_pCurrentVertexIndicesZ)
|
|
{
|
|
int32_t iZVolSpace = m_regSliceCurrent.getLowerCorner().getZ();
|
|
const uint32_t uZRegSpace = iZVolSpace - m_regSizeInVoxels.getLowerCorner().getZ();
|
|
|
|
//Iterate over each cell in the region
|
|
for(int32_t iYVolSpace = m_regSliceCurrent.getLowerCorner().getY(); iYVolSpace <= m_regSliceCurrent.getUpperCorner().getY(); iYVolSpace++)
|
|
{
|
|
const uint32_t uYRegSpace = iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY();
|
|
|
|
for(int32_t iXVolSpace = m_regSliceCurrent.getLowerCorner().getX(); iXVolSpace <= m_regSliceCurrent.getUpperCorner().getX(); iXVolSpace++)
|
|
{
|
|
//Current position
|
|
const uint32_t uXRegSpace = iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX();
|
|
|
|
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
|
uint8_t iCubeIndex = pCurrentBitmask[uXRegSpace][uYRegSpace];
|
|
|
|
/* Cube is entirely in/out of the surface */
|
|
if (edgeTable[iCubeIndex] == 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
//Check whether the generated vertex will lie on the edge of the region
|
|
|
|
|
|
m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace);
|
|
const VoxelType v000 = m_sampVolume.getVoxel();
|
|
const Vector3DFloat n000 = computeCentralDifferenceGradient(m_sampVolume);
|
|
|
|
/* Find the vertices where the surface intersects the cube */
|
|
if (edgeTable[iCubeIndex] & 1)
|
|
{
|
|
m_sampVolume.movePositiveX();
|
|
const VoxelType v100 = m_sampVolume.getVoxel();
|
|
const Vector3DFloat n100 = computeCentralDifferenceGradient(m_sampVolume);
|
|
|
|
//float fInterp = static_cast<float>(v100.getDensity() - VoxelType::getMinDensity()) / static_cast<float>(VoxelType::getMaxDensity() - VoxelType::getMinDensity());
|
|
float fInterp = static_cast<float>(VoxelType::getThreshold() - v000.getDensity()) / static_cast<float>(v100.getDensity() - v000.getDensity());
|
|
//fInterp = 0.5f;
|
|
|
|
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()) + fInterp, static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()), static_cast<float>(iZVolSpace - m_regSizeInCells.getLowerCorner().getZ()));
|
|
//const Vector3DFloat v3dNormal(v000.getDensity() > v100.getDensity() ? 1.0f : -1.0f,0.0,0.0);
|
|
|
|
Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1-fInterp));
|
|
v3dNormal.normalise();
|
|
|
|
const uint8_t uMaterial = v000.getMaterial() | v100.getMaterial(); //Because one of these is 0, the or operation takes the max.
|
|
|
|
PositionMaterialNormal surfaceVertex(v3dPosition, v3dNormal, uMaterial);
|
|
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
|
m_pCurrentVertexIndicesX[iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()][iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()] = uLastVertexIndex;
|
|
|
|
m_sampVolume.moveNegativeX();
|
|
}
|
|
if (edgeTable[iCubeIndex] & 8)
|
|
{
|
|
m_sampVolume.movePositiveY();
|
|
const VoxelType v010 = m_sampVolume.getVoxel();
|
|
const Vector3DFloat n010 = computeCentralDifferenceGradient(m_sampVolume);
|
|
|
|
float fInterp = static_cast<float>(VoxelType::getThreshold() - v000.getDensity()) / static_cast<float>(v010.getDensity() - v000.getDensity());
|
|
//fInterp = 0.5f;
|
|
|
|
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()) + fInterp, static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerCorner().getZ()));
|
|
//const Vector3DFloat v3dNormal(0.0,v000.getDensity() > v010.getDensity() ? 1.0f : -1.0f,0.0);
|
|
|
|
Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1-fInterp));
|
|
v3dNormal.normalise();
|
|
|
|
const uint8_t uMaterial = v000.getMaterial() | v010.getMaterial(); //Because one of these is 0, the or operation takes the max.
|
|
|
|
PositionMaterialNormal surfaceVertex(v3dPosition, v3dNormal, uMaterial);
|
|
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
|
m_pCurrentVertexIndicesY[iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()][iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()] = uLastVertexIndex;
|
|
|
|
m_sampVolume.moveNegativeY();
|
|
}
|
|
if (edgeTable[iCubeIndex] & 256)
|
|
{
|
|
m_sampVolume.movePositiveZ();
|
|
const VoxelType v001 = m_sampVolume.getVoxel();
|
|
const Vector3DFloat n001 = computeCentralDifferenceGradient(m_sampVolume);
|
|
|
|
float fInterp = static_cast<float>(VoxelType::getThreshold() - v000.getDensity()) / static_cast<float>(v001.getDensity() - v000.getDensity());
|
|
//fInterp = 0.5f;
|
|
|
|
const Vector3DFloat v3dPosition(static_cast<float>(iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()), static_cast<float>(iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()), static_cast<float>(iZVolSpace - m_regSizeInVoxels.getLowerCorner().getZ()) + fInterp);
|
|
//const Vector3DFloat v3dNormal(0.0,0.0,v000.getDensity() > v001.getDensity() ? 1.0f : -1.0f);
|
|
|
|
Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1-fInterp));
|
|
v3dNormal.normalise();
|
|
|
|
const uint8_t uMaterial = v000.getMaterial() | v001.getMaterial(); //Because one of these is 0, the or operation takes the max.
|
|
|
|
PositionMaterialNormal surfaceVertex(v3dPosition, v3dNormal, uMaterial);
|
|
uint32_t uLastVertexIndex = m_meshCurrent->addVertex(surfaceVertex);
|
|
m_pCurrentVertexIndicesZ[iXVolSpace - m_regSizeInVoxels.getLowerCorner().getX()][iYVolSpace - m_regSizeInVoxels.getLowerCorner().getY()] = uLastVertexIndex;
|
|
|
|
m_sampVolume.moveNegativeZ();
|
|
}
|
|
}//For each cell
|
|
}
|
|
}
|
|
|
|
template <typename VoxelType>
|
|
Vector3DFloat SurfaceExtractor<VoxelType>::computeCentralDifferenceGradient(const VolumeSampler<VoxelType>& volIter)
|
|
{
|
|
uint8_t voxel1nx = volIter.peekVoxel1nx0py0pz().getDensity();
|
|
uint8_t voxel1px = volIter.peekVoxel1px0py0pz().getDensity();
|
|
|
|
uint8_t voxel1ny = volIter.peekVoxel0px1ny0pz().getDensity();
|
|
uint8_t voxel1py = volIter.peekVoxel0px1py0pz().getDensity();
|
|
|
|
uint8_t voxel1nz = volIter.peekVoxel0px0py1nz().getDensity();
|
|
uint8_t voxel1pz = volIter.peekVoxel0px0py1pz().getDensity();
|
|
|
|
return Vector3DFloat
|
|
(
|
|
static_cast<float>(voxel1nx) - static_cast<float>(voxel1px),
|
|
static_cast<float>(voxel1ny) - static_cast<float>(voxel1py),
|
|
static_cast<float>(voxel1nz) - static_cast<float>(voxel1pz)
|
|
);
|
|
}
|
|
|
|
template <typename VoxelType>
|
|
Vector3DFloat SurfaceExtractor<VoxelType>::computeSobelGradient(const VolumeSampler<VoxelType>& volIter)
|
|
{
|
|
static const int weights[3][3][3] = { { {2,3,2}, {3,6,3}, {2,3,2} }, {
|
|
{3,6,3}, {6,0,6}, {3,6,3} }, { {2,3,2}, {3,6,3}, {2,3,2} } };
|
|
|
|
const uint8_t pVoxel1nx1ny1nz = volIter.peekVoxel1nx1ny1nz().getDensity();
|
|
const uint8_t pVoxel1nx1ny0pz = volIter.peekVoxel1nx1ny0pz().getDensity();
|
|
const uint8_t pVoxel1nx1ny1pz = volIter.peekVoxel1nx1ny1pz().getDensity();
|
|
const uint8_t pVoxel1nx0py1nz = volIter.peekVoxel1nx0py1nz().getDensity();
|
|
const uint8_t pVoxel1nx0py0pz = volIter.peekVoxel1nx0py0pz().getDensity();
|
|
const uint8_t pVoxel1nx0py1pz = volIter.peekVoxel1nx0py1pz().getDensity();
|
|
const uint8_t pVoxel1nx1py1nz = volIter.peekVoxel1nx1py1nz().getDensity();
|
|
const uint8_t pVoxel1nx1py0pz = volIter.peekVoxel1nx1py0pz().getDensity();
|
|
const uint8_t pVoxel1nx1py1pz = volIter.peekVoxel1nx1py1pz().getDensity();
|
|
|
|
const uint8_t pVoxel0px1ny1nz = volIter.peekVoxel0px1ny1nz().getDensity();
|
|
const uint8_t pVoxel0px1ny0pz = volIter.peekVoxel0px1ny0pz().getDensity();
|
|
const uint8_t pVoxel0px1ny1pz = volIter.peekVoxel0px1ny1pz().getDensity();
|
|
const uint8_t pVoxel0px0py1nz = volIter.peekVoxel0px0py1nz().getDensity();
|
|
//const uint8_t pVoxel0px0py0pz = volIter.peekVoxel0px0py0pz().getDensity();
|
|
const uint8_t pVoxel0px0py1pz = volIter.peekVoxel0px0py1pz().getDensity();
|
|
const uint8_t pVoxel0px1py1nz = volIter.peekVoxel0px1py1nz().getDensity();
|
|
const uint8_t pVoxel0px1py0pz = volIter.peekVoxel0px1py0pz().getDensity();
|
|
const uint8_t pVoxel0px1py1pz = volIter.peekVoxel0px1py1pz().getDensity();
|
|
|
|
const uint8_t pVoxel1px1ny1nz = volIter.peekVoxel1px1ny1nz().getDensity();
|
|
const uint8_t pVoxel1px1ny0pz = volIter.peekVoxel1px1ny0pz().getDensity();
|
|
const uint8_t pVoxel1px1ny1pz = volIter.peekVoxel1px1ny1pz().getDensity();
|
|
const uint8_t pVoxel1px0py1nz = volIter.peekVoxel1px0py1nz().getDensity();
|
|
const uint8_t pVoxel1px0py0pz = volIter.peekVoxel1px0py0pz().getDensity();
|
|
const uint8_t pVoxel1px0py1pz = volIter.peekVoxel1px0py1pz().getDensity();
|
|
const uint8_t pVoxel1px1py1nz = volIter.peekVoxel1px1py1nz().getDensity();
|
|
const uint8_t pVoxel1px1py0pz = volIter.peekVoxel1px1py0pz().getDensity();
|
|
const uint8_t pVoxel1px1py1pz = volIter.peekVoxel1px1py1pz().getDensity();
|
|
|
|
const int xGrad(- weights[0][0][0] * pVoxel1nx1ny1nz -
|
|
weights[1][0][0] * pVoxel1nx1ny0pz - weights[2][0][0] *
|
|
pVoxel1nx1ny1pz - weights[0][1][0] * pVoxel1nx0py1nz -
|
|
weights[1][1][0] * pVoxel1nx0py0pz - weights[2][1][0] *
|
|
pVoxel1nx0py1pz - weights[0][2][0] * pVoxel1nx1py1nz -
|
|
weights[1][2][0] * pVoxel1nx1py0pz - weights[2][2][0] *
|
|
pVoxel1nx1py1pz + weights[0][0][2] * pVoxel1px1ny1nz +
|
|
weights[1][0][2] * pVoxel1px1ny0pz + weights[2][0][2] *
|
|
pVoxel1px1ny1pz + weights[0][1][2] * pVoxel1px0py1nz +
|
|
weights[1][1][2] * pVoxel1px0py0pz + weights[2][1][2] *
|
|
pVoxel1px0py1pz + weights[0][2][2] * pVoxel1px1py1nz +
|
|
weights[1][2][2] * pVoxel1px1py0pz + weights[2][2][2] *
|
|
pVoxel1px1py1pz);
|
|
|
|
const int yGrad(- weights[0][0][0] * pVoxel1nx1ny1nz -
|
|
weights[1][0][0] * pVoxel1nx1ny0pz - weights[2][0][0] *
|
|
pVoxel1nx1ny1pz + weights[0][2][0] * pVoxel1nx1py1nz +
|
|
weights[1][2][0] * pVoxel1nx1py0pz + weights[2][2][0] *
|
|
pVoxel1nx1py1pz - weights[0][0][1] * pVoxel0px1ny1nz -
|
|
weights[1][0][1] * pVoxel0px1ny0pz - weights[2][0][1] *
|
|
pVoxel0px1ny1pz + weights[0][2][1] * pVoxel0px1py1nz +
|
|
weights[1][2][1] * pVoxel0px1py0pz + weights[2][2][1] *
|
|
pVoxel0px1py1pz - weights[0][0][2] * pVoxel1px1ny1nz -
|
|
weights[1][0][2] * pVoxel1px1ny0pz - weights[2][0][2] *
|
|
pVoxel1px1ny1pz + weights[0][2][2] * pVoxel1px1py1nz +
|
|
weights[1][2][2] * pVoxel1px1py0pz + weights[2][2][2] *
|
|
pVoxel1px1py1pz);
|
|
|
|
const int zGrad(- weights[0][0][0] * pVoxel1nx1ny1nz +
|
|
weights[2][0][0] * pVoxel1nx1ny1pz - weights[0][1][0] *
|
|
pVoxel1nx0py1nz + weights[2][1][0] * pVoxel1nx0py1pz -
|
|
weights[0][2][0] * pVoxel1nx1py1nz + weights[2][2][0] *
|
|
pVoxel1nx1py1pz - weights[0][0][1] * pVoxel0px1ny1nz +
|
|
weights[2][0][1] * pVoxel0px1ny1pz - weights[0][1][1] *
|
|
pVoxel0px0py1nz + weights[2][1][1] * pVoxel0px0py1pz -
|
|
weights[0][2][1] * pVoxel0px1py1nz + weights[2][2][1] *
|
|
pVoxel0px1py1pz - weights[0][0][2] * pVoxel1px1ny1nz +
|
|
weights[2][0][2] * pVoxel1px1ny1pz - weights[0][1][2] *
|
|
pVoxel1px0py1nz + weights[2][1][2] * pVoxel1px0py1pz -
|
|
weights[0][2][2] * pVoxel1px1py1nz + weights[2][2][2] *
|
|
pVoxel1px1py1pz);
|
|
|
|
//Note: The above actually give gradients going from low density to high density.
|
|
//For our normals we want the the other way around, so we switch the components as we return them.
|
|
return Vector3DFloat(static_cast<float>(-xGrad),static_cast<float>(-yGrad),static_cast<float>(-zGrad));
|
|
}
|
|
|
|
template <typename VoxelType>
|
|
void SurfaceExtractor<VoxelType>::generateIndicesForSlice(const Array2DUint8& pPreviousBitmask,
|
|
const Array2DInt32& m_pPreviousVertexIndicesX,
|
|
const Array2DInt32& m_pPreviousVertexIndicesY,
|
|
const Array2DInt32& m_pPreviousVertexIndicesZ,
|
|
const Array2DInt32& m_pCurrentVertexIndicesX,
|
|
const Array2DInt32& m_pCurrentVertexIndicesY,
|
|
const Array2DInt32& m_pCurrentVertexIndicesZ)
|
|
{
|
|
int32_t indlist[12];
|
|
for(int i = 0; i < 12; i++)
|
|
{
|
|
indlist[i] = -1;
|
|
}
|
|
|
|
for(int32_t iYVolSpace = m_regSlicePrevious.getLowerCorner().getY(); iYVolSpace <= m_regSizeInCells.getUpperCorner().getY(); iYVolSpace++)
|
|
{
|
|
for(int32_t iXVolSpace = m_regSlicePrevious.getLowerCorner().getX(); iXVolSpace <= m_regSizeInCells.getUpperCorner().getX(); iXVolSpace++)
|
|
{
|
|
int32_t iZVolSpace = m_regSlicePrevious.getLowerCorner().getZ();
|
|
m_sampVolume.setPosition(iXVolSpace,iYVolSpace,iZVolSpace);
|
|
|
|
//Current position
|
|
const uint32_t uXRegSpace = m_sampVolume.getPosX() - m_regSizeInVoxels.getLowerCorner().getX();
|
|
const uint32_t uYRegSpace = m_sampVolume.getPosY() - m_regSizeInVoxels.getLowerCorner().getY();
|
|
const uint32_t uZRegSpace = m_sampVolume.getPosZ() - m_regSizeInVoxels.getLowerCorner().getZ();
|
|
|
|
//Determine the index into the edge table which tells us which vertices are inside of the surface
|
|
uint8_t iCubeIndex = pPreviousBitmask[uXRegSpace][uYRegSpace];
|
|
|
|
/* Cube is entirely in/out of the surface */
|
|
if (edgeTable[iCubeIndex] == 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/* Find the vertices where the surface intersects the cube */
|
|
if (edgeTable[iCubeIndex] & 1)
|
|
{
|
|
indlist[0] = m_pPreviousVertexIndicesX[uXRegSpace][uYRegSpace];
|
|
//assert(indlist[0] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 2)
|
|
{
|
|
indlist[1] = m_pPreviousVertexIndicesY[uXRegSpace+1][uYRegSpace];
|
|
//assert(indlist[1] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 4)
|
|
{
|
|
indlist[2] = m_pPreviousVertexIndicesX[uXRegSpace][uYRegSpace+1];
|
|
//assert(indlist[2] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 8)
|
|
{
|
|
indlist[3] = m_pPreviousVertexIndicesY[uXRegSpace][uYRegSpace];
|
|
//assert(indlist[3] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 16)
|
|
{
|
|
indlist[4] = m_pCurrentVertexIndicesX[uXRegSpace][uYRegSpace];
|
|
//assert(indlist[4] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 32)
|
|
{
|
|
indlist[5] = m_pCurrentVertexIndicesY[uXRegSpace+1][uYRegSpace];
|
|
//assert(indlist[5] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 64)
|
|
{
|
|
indlist[6] = m_pCurrentVertexIndicesX[uXRegSpace][uYRegSpace+1];
|
|
//assert(indlist[6] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 128)
|
|
{
|
|
indlist[7] = m_pCurrentVertexIndicesY[uXRegSpace][uYRegSpace];
|
|
//assert(indlist[7] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 256)
|
|
{
|
|
indlist[8] = m_pPreviousVertexIndicesZ[uXRegSpace][uYRegSpace];
|
|
//assert(indlist[8] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 512)
|
|
{
|
|
indlist[9] = m_pPreviousVertexIndicesZ[uXRegSpace+1][uYRegSpace];
|
|
//assert(indlist[9] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 1024)
|
|
{
|
|
indlist[10] = m_pPreviousVertexIndicesZ[uXRegSpace+1][uYRegSpace+1];
|
|
//assert(indlist[10] != -1);
|
|
}
|
|
if (edgeTable[iCubeIndex] & 2048)
|
|
{
|
|
indlist[11] = m_pPreviousVertexIndicesZ[uXRegSpace][uYRegSpace+1];
|
|
//assert(indlist[11] != -1);
|
|
}
|
|
|
|
for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3)
|
|
{
|
|
int32_t ind0 = indlist[triTable[iCubeIndex][i ]];
|
|
int32_t ind1 = indlist[triTable[iCubeIndex][i+1]];
|
|
int32_t ind2 = indlist[triTable[iCubeIndex][i+2]];
|
|
|
|
if((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
|
|
{
|
|
assert(ind0 >= 0);
|
|
assert(ind1 >= 0);
|
|
assert(ind2 >= 0);
|
|
|
|
assert(ind0 < 1000000);
|
|
assert(ind1 < 1000000);
|
|
assert(ind2 < 1000000);
|
|
m_meshCurrent->addTriangle(ind0, ind1, ind2);
|
|
}
|
|
}//For each triangle
|
|
}//For each cell
|
|
}
|
|
}
|
|
} |