polyvox/library/PolyVoxCore/source/SurfaceExtractor.cpp

950 lines
39 KiB
C++

#include "SurfaceExtractor.h"
#include "IndexedSurfacePatch.h"
#include "PolyVoxImpl/MarchingCubesTables.h"
#include "SurfaceVertex.h"
namespace PolyVox
{
SurfaceExtractor::SurfaceExtractor(Volume<uint8_t>& volData)
:m_uLodLevel(0)
,m_volData(volData)
,m_iterVolume(volData)
{
}
uint8_t SurfaceExtractor::getLodLevel(void)
{
return m_uLodLevel;
}
void SurfaceExtractor::setLodLevel(uint8_t uLodLevel)
{
m_uLodLevel = uLodLevel;
}
POLYVOX_SHARED_PTR<IndexedSurfacePatch> SurfaceExtractor::extractSurfaceForRegion(Region region)
{
POLYVOX_SHARED_PTR<IndexedSurfacePatch> result(new IndexedSurfacePatch());
if(m_uLodLevel == 0)
{
extractSurfaceForRegionLevel0(&m_volData, region, result.get());
}
else
{
extractDecimatedSurfaceImpl(&m_volData, m_uLodLevel, region, result.get());
}
result->m_Region = region;
return result;
}
uint32_t SurfaceExtractor::getIndex(uint32_t x, uint32_t y, uint32_t regionWidth)
{
return x + (y * (regionWidth+1));
}
////////////////////////////////////////////////////////////////////////////////
// Level 0
////////////////////////////////////////////////////////////////////////////////
void SurfaceExtractor::extractSurfaceForRegionLevel0(Volume<uint8_t>* volumeData, Region region, IndexedSurfacePatch* singleMaterialPatch)
{
singleMaterialPatch->clear();
//For edge indices
int32_t* vertexIndicesX0 = new int32_t[(region.width()+8) * (region.height()+8)];
int32_t* vertexIndicesY0 = new int32_t[(region.width()+8) * (region.height()+8)];
int32_t* vertexIndicesZ0 = new int32_t[(region.width()+8) * (region.height()+8)];
int32_t* vertexIndicesX1 = new int32_t[(region.width()+8) * (region.height()+8)];
int32_t* vertexIndicesY1 = new int32_t[(region.width()+8) * (region.height()+8)];
int32_t* vertexIndicesZ1 = new int32_t[(region.width()+8) * (region.height()+8)];
//Cell bitmasks
uint8_t* bitmask0 = new uint8_t[(region.width()+8) * (region.height()+8)];
uint8_t* bitmask1 = new uint8_t[(region.width()+8) * (region.height()+8)];
//When generating the mesh for a region we actually look one voxel outside it in the
// back, bottom, right direction. Protect against access violations by cropping region here
Region regVolume = volumeData->getEnclosingRegion();
//regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(1,1,1));
region.cropTo(regVolume);
//Offset from volume corner
const Vector3DFloat offset = static_cast<Vector3DFloat>(region.getLowerCorner());
//Create a region corresponding to the first slice
Region regSlice0(region);
regSlice0.setUpperCorner(Vector3DInt32(regSlice0.getUpperCorner().getX(),regSlice0.getUpperCorner().getY(),regSlice0.getLowerCorner().getZ()));
//Iterator to access the volume data
VolumeSampler<uint8_t> volIter(*volumeData);
//Compute bitmask for initial slice
uint32_t uNoOfNonEmptyCellsForSlice0 = computeBitmaskForSliceLevel0(volIter, regSlice0, offset, bitmask0, 0);
if(uNoOfNonEmptyCellsForSlice0 != 0)
{
//If there were some non-empty cells then generate initial slice vertices for them
generateVerticesForSliceLevel0(volIter,regSlice0, offset, bitmask0, singleMaterialPatch, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0);
}
for(uint32_t uSlice = 0; ((uSlice < region.depth()) && (uSlice + offset.getZ() < region.getUpperCorner().getZ())); ++uSlice)
{
Region regSlice1(regSlice0);
regSlice1.shift(Vector3DInt32(0,0,1));
uint32_t uNoOfNonEmptyCellsForSlice1 = computeBitmaskForSliceLevel0(volIter, regSlice1, offset, bitmask1, bitmask0);
if(uNoOfNonEmptyCellsForSlice1 != 0)
{
generateVerticesForSliceLevel0(volIter,regSlice1, offset, bitmask1, singleMaterialPatch, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1);
}
if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0))
{
generateIndicesForSlice(volIter, 0, regSlice0, singleMaterialPatch, offset, bitmask0, bitmask1, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1);
}
std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1);
std::swap(bitmask0, bitmask1);
std::swap(vertexIndicesX0, vertexIndicesX1);
std::swap(vertexIndicesY0, vertexIndicesY1);
std::swap(vertexIndicesZ0, vertexIndicesZ1);
regSlice0 = regSlice1;
}
delete[] bitmask0;
delete[] bitmask1;
delete[] vertexIndicesX0;
delete[] vertexIndicesX1;
delete[] vertexIndicesY0;
delete[] vertexIndicesY1;
delete[] vertexIndicesZ0;
delete[] vertexIndicesZ1;
}
uint32_t SurfaceExtractor::computeBitmaskForSliceLevel0(VolumeSampler<uint8_t>& volIter, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, uint8_t* previousBitmask)
{
uint32_t uNoOfNonEmptyCells = 0;
//Iterate over each cell in the region
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace++)
{
for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace <= regSlice.getUpperCorner().getX(); uXVolSpace++)
{
uint16_t uZVolSpace = regSlice.getLowerCorner().getZ();
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
//Current position
const uint16_t uXRegSpace = volIter.getPosX() - offset.getX();
const uint16_t uYRegSpace = volIter.getPosY() - offset.getY();
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = 0;
if((uXVolSpace < volIter.getVolume().getWidth()-1) &&
(uYVolSpace < volIter.getVolume().getHeight()-1) &&
(uZVolSpace < volIter.getVolume().getDepth()-1))
{
bool isPrevXAvail = uXRegSpace > 0;
bool isPrevYAvail = uYRegSpace > 0;
bool isPrevZAvail = previousBitmask != 0;
if(isPrevZAvail)
{
if(isPrevYAvail)
{
if(isPrevXAvail)
{
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
//z
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexZ >>= 4;
//y
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)];
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
iPreviousCubeIndexY >>= 2;
//x
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
iPreviousCubeIndexX >>= 1;
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ;
if (v111 == 0) iCubeIndex |= 128;
}
else //previous X not available
{
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
//z
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexZ >>= 4;
//y
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)];
iPreviousCubeIndexY &= 192; //192 = 128 + 64
iPreviousCubeIndexY >>= 2;
iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
}
else //previous Y not available
{
if(isPrevXAvail)
{
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
//z
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexZ >>= 4;
//x
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexX &= 160; //160 = 128+32
iPreviousCubeIndexX >>= 1;
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ;
if (v101 == 0) iCubeIndex |= 32;
if (v111 == 0) iCubeIndex |= 128;
}
else //previous X not available
{
const uint8_t v001 = volIter.peekVoxel0px0py1pz();
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
//z
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
iCubeIndex = iPreviousCubeIndexZ >> 4;
if (v001 == 0) iCubeIndex |= 16;
if (v101 == 0) iCubeIndex |= 32;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
}
}
else //previous Z not available
{
if(isPrevYAvail)
{
if(isPrevXAvail)
{
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
//y
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)];
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
iPreviousCubeIndexY >>= 2;
//x
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
iPreviousCubeIndexX >>= 1;
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY;
if (v110 == 0) iCubeIndex |= 8;
if (v111 == 0) iCubeIndex |= 128;
}
else //previous X not available
{
const uint8_t v010 = volIter.peekVoxel0px1py0pz();
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
//y
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-1, regSlice.width()+1)];
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
iPreviousCubeIndexY >>= 2;
iCubeIndex = iPreviousCubeIndexY;
if (v010 == 0) iCubeIndex |= 4;
if (v110 == 0) iCubeIndex |= 8;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
}
else //previous Y not available
{
if(isPrevXAvail)
{
const uint8_t v100 = volIter.peekVoxel1px0py0pz();
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
//x
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-1,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
iPreviousCubeIndexX >>= 1;
iCubeIndex = iPreviousCubeIndexX;
if (v100 == 0) iCubeIndex |= 2;
if (v110 == 0) iCubeIndex |= 8;
if (v101 == 0) iCubeIndex |= 32;
if (v111 == 0) iCubeIndex |= 128;
}
else //previous X not available
{
const uint8_t v000 = volIter.getVoxel();
const uint8_t v100 = volIter.peekVoxel1px0py0pz();
const uint8_t v010 = volIter.peekVoxel0px1py0pz();
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
const uint8_t v001 = volIter.peekVoxel0px0py1pz();
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
if (v000 == 0) iCubeIndex |= 1;
if (v100 == 0) iCubeIndex |= 2;
if (v010 == 0) iCubeIndex |= 4;
if (v110 == 0) iCubeIndex |= 8;
if (v001 == 0) iCubeIndex |= 16;
if (v101 == 0) iCubeIndex |= 32;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
}
}
}
else //We're at the edge of the volume - use bounds checking.
{
const uint8_t v000 = volIter.getVoxel();
const uint8_t v100 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace , uZVolSpace );
const uint8_t v010 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace+1, uZVolSpace );
const uint8_t v110 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace+1, uZVolSpace );
const uint8_t v001 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace , uZVolSpace+1);
const uint8_t v101 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace , uZVolSpace+1);
const uint8_t v011 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace , uYVolSpace+1, uZVolSpace+1);
const uint8_t v111 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace+1, uYVolSpace+1, uZVolSpace+1);
if (v000 == 0) iCubeIndex |= 1;
if (v100 == 0) iCubeIndex |= 2;
if (v010 == 0) iCubeIndex |= 4;
if (v110 == 0) iCubeIndex |= 8;
if (v001 == 0) iCubeIndex |= 16;
if (v101 == 0) iCubeIndex |= 32;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
//Save the bitmask
bitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)] = iCubeIndex;
if(edgeTable[iCubeIndex] != 0)
{
++uNoOfNonEmptyCells;
}
}
}
return uNoOfNonEmptyCells;
}
void SurfaceExtractor::generateVerticesForSliceLevel0(VolumeSampler<uint8_t>& volIter, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,int32_t vertexIndicesX[],int32_t vertexIndicesY[],int32_t vertexIndicesZ[])
{
//Iterate over each cell in the region
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace++)
{
for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace <= regSlice.getUpperCorner().getX(); uXVolSpace++)
{
uint16_t uZVolSpace = regSlice.getLowerCorner().getZ();
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
//Current position
const uint16_t uXRegSpace = volIter.getPosX() - offset.getX();
const uint16_t uYRegSpace = volIter.getPosY() - offset.getY();
const uint16_t uZRegSpace = volIter.getPosZ() - offset.getZ();
const uint8_t v000 = volIter.getVoxel();
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = bitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
{
continue;
}
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
if((uXRegSpace + offset.getX()) != regSlice.getUpperCorner().getX())
{
const uint8_t v100 = volIter.peekVoxel1px0py0pz();
const Vector3DFloat v3dPosition(uXRegSpace + 0.5f, uYRegSpace, uZRegSpace);
const Vector3DFloat v3dNormal(v000 > v100 ? 1.0f : -1.0f, 0.0f, 0.0f);
const uint8_t uMaterial = v000 | v100; //Because one of these is 0, the or operation takes the max.
const SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
vertexIndicesX[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)] = uLastVertexIndex;
}
}
if (edgeTable[iCubeIndex] & 8)
{
if((uYRegSpace + offset.getY()) != regSlice.getUpperCorner().getY())
{
const uint8_t v010 = volIter.peekVoxel0px1py0pz();
const Vector3DFloat v3dPosition(uXRegSpace, uYRegSpace + 0.5f, uZRegSpace);
const Vector3DFloat v3dNormal(0.0f, v000 > v010 ? 1.0f : -1.0f, 0.0f);
const uint8_t uMaterial = v000 | v010;
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
vertexIndicesY[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)] = uLastVertexIndex;
}
}
if (edgeTable[iCubeIndex] & 256)
{
uint8_t v001;
if((uZRegSpace + offset.getZ()) != regSlice.getUpperCorner().getZ())
{
v001 = volIter.peekVoxel0px0py1pz();
}
else
{
v001 = volIter.getVolume().getVoxelAtWithBoundCheck(uXVolSpace,uYVolSpace,uZVolSpace+1);
}
const Vector3DFloat v3dPosition(uXRegSpace, uYRegSpace, uZRegSpace + 0.5f);
const Vector3DFloat v3dNormal(0.0f, 0.0f, v000 > v001 ? 1.0f : -1.0f);
const uint8_t uMaterial = v000 | v001;
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
vertexIndicesZ[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)] = uLastVertexIndex;
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Level 1
////////////////////////////////////////////////////////////////////////////////
void SurfaceExtractor::extractDecimatedSurfaceImpl(Volume<uint8_t>* volumeData, uint8_t uLevel, Region region, IndexedSurfacePatch* singleMaterialPatch)
{
singleMaterialPatch->clear();
//For edge indices
//FIXME - do the slices need to be this big? Surely for a decimated mesh they can be smaller?
//FIXME - Instead of region.width()+2 we used to use POLYVOX_REGION_SIDE_LENGTH+1
//Normally POLYVOX_REGION_SIDE_LENGTH is the same as region.width() (often 32) but at the
//edges of the volume it is 1 smaller. Need to think what values really belong here.
int32_t* vertexIndicesX0 = new int32_t[(region.width()+2) * (region.height()+2)];
int32_t* vertexIndicesY0 = new int32_t[(region.width()+2) * (region.height()+2)];
int32_t* vertexIndicesZ0 = new int32_t[(region.width()+2) * (region.height()+2)];
int32_t* vertexIndicesX1 = new int32_t[(region.width()+2) * (region.height()+2)];
int32_t* vertexIndicesY1 = new int32_t[(region.width()+2) * (region.height()+2)];
int32_t* vertexIndicesZ1 = new int32_t[(region.width()+2) * (region.height()+2)];
//Cell bitmasks
uint8_t* bitmask0 = new uint8_t[(region.width()+2) * (region.height()+2)];
uint8_t* bitmask1 = new uint8_t[(region.width()+2) * (region.height()+2)];
const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel;
//When generating the mesh for a region we actually look outside it in the
// back, bottom, right direction. Protect against access violations by cropping region here
Region regVolume = volumeData->getEnclosingRegion();
regVolume.setUpperCorner(regVolume.getUpperCorner() - Vector3DInt32(2*uStepSize-1,2*uStepSize-1,2*uStepSize-1));
region.cropTo(regVolume);
//Offset from volume corner
const Vector3DFloat offset = static_cast<Vector3DFloat>(region.getLowerCorner());
//Create a region corresponding to the first slice
Region regSlice0(region);
Vector3DInt32 v3dUpperCorner = regSlice0.getUpperCorner();
v3dUpperCorner.setZ(regSlice0.getLowerCorner().getZ()); //Set the upper z to the lower z to make it one slice thick.
regSlice0.setUpperCorner(v3dUpperCorner);
//Iterator to access the volume data
VolumeSampler<uint8_t> volIter(*volumeData);
//Compute bitmask for initial slice
uint32_t uNoOfNonEmptyCellsForSlice0 = computeDecimatedBitmaskForSlice(volIter, uLevel, regSlice0, offset, bitmask0, 0);
if(uNoOfNonEmptyCellsForSlice0 != 0)
{
//If there were some non-empty cells then generate initial slice vertices for them
generateDecimatedVerticesForSlice(volIter, uLevel, regSlice0, offset, bitmask0, singleMaterialPatch, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0);
}
for(uint32_t uSlice = 1; ((uSlice <= region.depth()) && (uSlice + offset.getZ() <= regVolume.getUpperCorner().getZ())); uSlice += uStepSize)
{
Region regSlice1(regSlice0);
regSlice1.shift(Vector3DInt32(0,0,uStepSize));
uint32_t uNoOfNonEmptyCellsForSlice1 = computeDecimatedBitmaskForSlice(volIter, uLevel, regSlice1, offset, bitmask1, bitmask0);
if(uNoOfNonEmptyCellsForSlice1 != 0)
{
generateDecimatedVerticesForSlice(volIter, uLevel, regSlice1, offset, bitmask1, singleMaterialPatch, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1);
}
if((uNoOfNonEmptyCellsForSlice0 != 0) || (uNoOfNonEmptyCellsForSlice1 != 0))
{
generateIndicesForSlice(volIter, uLevel, regSlice0, singleMaterialPatch, offset, bitmask0, bitmask1, vertexIndicesX0, vertexIndicesY0, vertexIndicesZ0, vertexIndicesX1, vertexIndicesY1, vertexIndicesZ1);
}
std::swap(uNoOfNonEmptyCellsForSlice0, uNoOfNonEmptyCellsForSlice1);
std::swap(bitmask0, bitmask1);
std::swap(vertexIndicesX0, vertexIndicesX1);
std::swap(vertexIndicesY0, vertexIndicesY1);
std::swap(vertexIndicesZ0, vertexIndicesZ1);
regSlice0 = regSlice1;
}
delete[] bitmask0;
delete[] bitmask1;
delete[] vertexIndicesX0;
delete[] vertexIndicesX1;
delete[] vertexIndicesY0;
delete[] vertexIndicesY1;
delete[] vertexIndicesZ0;
delete[] vertexIndicesZ1;
/*std::vector<SurfaceVertex>::iterator iterSurfaceVertex = singleMaterialPatch->getVertices().begin();
while(iterSurfaceVertex != singleMaterialPatch->getVertices().end())
{
Vector3DFloat tempNormal = computeDecimatedNormal(volumeData, static_cast<Vector3DFloat>(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE);
const_cast<SurfaceVertex&>(*iterSurfaceVertex).setNormal(tempNormal);
++iterSurfaceVertex;
}*/
}
uint32_t SurfaceExtractor::computeDecimatedBitmaskForSlice(VolumeSampler<uint8_t>& volIter, uint8_t uLevel, const Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, uint8_t* previousBitmask)
{
const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel;
uint32_t uNoOfNonEmptyCells = 0;
//Iterate over each cell in the region
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace <= regSlice.getUpperCorner().getY(); uYVolSpace += uStepSize)
{
for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace <= regSlice.getUpperCorner().getX(); uXVolSpace += uStepSize)
{
uint16_t uZVolSpace = regSlice.getLowerCorner().getZ();
//Current position
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
const uint16_t uXRegSpace = volIter.getPosX() - offset.getX();
const uint16_t uYRegSpace = volIter.getPosY() - offset.getY();
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = 0;
bool isPrevXAvail = uXRegSpace > 0;
bool isPrevYAvail = uYRegSpace > 0;
bool isPrevZAvail = previousBitmask != 0;
if(isPrevZAvail)
{
if(isPrevYAvail)
{
if(isPrevXAvail)
{
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
//z
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexZ >>= 4;
//y
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-uStepSize, regSlice.width()+1)];
iPreviousCubeIndexY &= 192; //192 = 128 + 64
iPreviousCubeIndexY >>= 2;
//x
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-uStepSize,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexX &= 128;
iPreviousCubeIndexX >>= 1;
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY | iPreviousCubeIndexZ;
if (v111 == 0) iCubeIndex |= 128;
}
else //previous X not available
{
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
const uint8_t v011 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
//z
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexZ >>= 4;
//y
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-uStepSize, regSlice.width()+1)];
iPreviousCubeIndexY &= 192; //192 = 128 + 64
iPreviousCubeIndexY >>= 2;
iCubeIndex = iPreviousCubeIndexY | iPreviousCubeIndexZ;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
}
else //previous Y not available
{
if(isPrevXAvail)
{
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace+uStepSize);
const uint8_t v101 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
//z
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexZ >>= 4;
//x
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-uStepSize,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexX &= 160; //160 = 128+32
iPreviousCubeIndexX >>= 1;
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexZ;
if (v101 == 0) iCubeIndex |= 32;
if (v111 == 0) iCubeIndex |= 128;
}
else //previous X not available
{
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+uStepSize);
const uint8_t v001 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace+uStepSize);
const uint8_t v101 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
const uint8_t v011 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
//z
uint8_t iPreviousCubeIndexZ = previousBitmask[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
iCubeIndex = iPreviousCubeIndexZ >> 4;
if (v001 == 0) iCubeIndex |= 16;
if (v101 == 0) iCubeIndex |= 32;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
}
}
else //previous Z not available
{
if(isPrevYAvail)
{
if(isPrevXAvail)
{
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace);
const uint8_t v110 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
//y
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-uStepSize, regSlice.width()+1)];
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
iPreviousCubeIndexY >>= 2;
//x
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-uStepSize,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
iPreviousCubeIndexX >>= 1;
iCubeIndex = iPreviousCubeIndexX | iPreviousCubeIndexY;
if (v110 == 0) iCubeIndex |= 8;
if (v111 == 0) iCubeIndex |= 128;
}
else //previous X not available
{
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace);
const uint8_t v010 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace);
const uint8_t v110 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
const uint8_t v011 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
//y
uint8_t iPreviousCubeIndexY = bitmask[getIndex(uXRegSpace,uYRegSpace-uStepSize, regSlice.width()+1)];
iPreviousCubeIndexY &= 204; //204 = 128+64+8+4
iPreviousCubeIndexY >>= 2;
iCubeIndex = iPreviousCubeIndexY;
if (v010 == 0) iCubeIndex |= 4;
if (v110 == 0) iCubeIndex |= 8;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
}
else //previous Y not available
{
if(isPrevXAvail)
{
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace);
const uint8_t v100 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace);
const uint8_t v110 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace+uStepSize);
const uint8_t v101 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
//x
uint8_t iPreviousCubeIndexX = bitmask[getIndex(uXRegSpace-uStepSize,uYRegSpace, regSlice.width()+1)];
iPreviousCubeIndexX &= 170; //170 = 128+32+8+2
iPreviousCubeIndexX >>= 1;
iCubeIndex = iPreviousCubeIndexX;
if (v100 == 0) iCubeIndex |= 2;
if (v110 == 0) iCubeIndex |= 8;
if (v101 == 0) iCubeIndex |= 32;
if (v111 == 0) iCubeIndex |= 128;
}
else //previous X not available
{
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
const uint8_t v000 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace);
const uint8_t v100 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace);
const uint8_t v010 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace);
const uint8_t v110 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace+uStepSize);
const uint8_t v001 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace,uZVolSpace+uStepSize);
const uint8_t v101 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
const uint8_t v011 = volIter.getSubSampledVoxel(uLevel);
volIter.setPosition(uXVolSpace+uStepSize,uYVolSpace+uStepSize,uZVolSpace+uStepSize);
const uint8_t v111 = volIter.getSubSampledVoxel(uLevel);
if (v000 == 0) iCubeIndex |= 1;
if (v100 == 0) iCubeIndex |= 2;
if (v010 == 0) iCubeIndex |= 4;
if (v110 == 0) iCubeIndex |= 8;
if (v001 == 0) iCubeIndex |= 16;
if (v101 == 0) iCubeIndex |= 32;
if (v011 == 0) iCubeIndex |= 64;
if (v111 == 0) iCubeIndex |= 128;
}
}
}
//Save the bitmask
bitmask[getIndex(uXRegSpace,uYVolSpace- offset.getY(), regSlice.width()+1)] = iCubeIndex;
if(edgeTable[iCubeIndex] != 0)
{
++uNoOfNonEmptyCells;
}
}//For each cell
}
return uNoOfNonEmptyCells;
}
void SurfaceExtractor::generateDecimatedVerticesForSlice(VolumeSampler<uint8_t>& volIter, uint8_t uLevel, Region& regSlice, const Vector3DFloat& offset, uint8_t* bitmask, IndexedSurfacePatch* singleMaterialPatch,int32_t vertexIndicesX[],int32_t vertexIndicesY[],int32_t vertexIndicesZ[])
{
const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel;
//Iterate over each cell in the region
for(uint16_t y = regSlice.getLowerCorner().getY(); y <= regSlice.getUpperCorner().getY(); y += uStepSize)
{
for(uint16_t x = regSlice.getLowerCorner().getX(); x <= regSlice.getUpperCorner().getX(); x += uStepSize)
{
//Current position
const uint16_t z = regSlice.getLowerCorner().getZ();
volIter.setPosition(x,y,z);
const uint8_t v000 = volIter.getSubSampledVoxel(uLevel);
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = bitmask[getIndex(x - offset.getX(),y - offset.getY(), regSlice.width()+1)];
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
{
continue;
}
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
if(x != regSlice.getUpperCorner().getX())
{
volIter.setPosition(x + uStepSize,y,z);
const uint8_t v100 = volIter.getSubSampledVoxel(uLevel);
const Vector3DFloat v3dPosition(x - offset.getX() + 0.5f * uStepSize, y - offset.getY(), z - offset.getZ());
const Vector3DFloat v3dNormal(v000 > v100 ? 1.0f : -1.0f,0.0,0.0);
const uint8_t uMaterial = v000 | v100; //Because one of these is 0, the or operation takes the max.
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
vertexIndicesX[getIndex(x - offset.getX(),y - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
}
}
if (edgeTable[iCubeIndex] & 8)
{
if(y != regSlice.getUpperCorner().getY())
{
volIter.setPosition(x,y + uStepSize,z);
const uint8_t v010 = volIter.getSubSampledVoxel(uLevel);
const Vector3DFloat v3dPosition(x - offset.getX(), y - offset.getY() + 0.5f * uStepSize, z - offset.getZ());
const Vector3DFloat v3dNormal(0.0,v000 > v010 ? 1.0f : -1.0f,0.0);
const uint8_t uMaterial = v000 | v010; //Because one of these is 0, the or operation takes the max.
SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
vertexIndicesY[getIndex(x - offset.getX(),y - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
}
}
if (edgeTable[iCubeIndex] & 256)
{
//if(z != regSlice.getUpperCorner.getZ())
{
volIter.setPosition(x,y,z + uStepSize);
const uint8_t v001 = volIter.getSubSampledVoxel(uLevel);
const Vector3DFloat v3dPosition(x - offset.getX(), y - offset.getY(), z - offset.getZ() + 0.5f * uStepSize);
const Vector3DFloat v3dNormal(0.0,0.0,v000 > v001 ? 1.0f : -1.0f);
const uint8_t uMaterial = v000 | v001; //Because one of these is 0, the or operation takes the max.
const SurfaceVertex surfaceVertex(v3dPosition, v3dNormal, uMaterial);
uint32_t uLastVertexIndex = singleMaterialPatch->addVertex(surfaceVertex);
vertexIndicesZ[getIndex(x - offset.getX(),y - offset.getY(), regSlice.width()+1)] = uLastVertexIndex;
}
}
}//For each cell
}
}
void SurfaceExtractor::generateIndicesForSlice(VolumeSampler<uint8_t>& volIter, uint8_t uLevel, const Region& regSlice, IndexedSurfacePatch* singleMaterialPatch, const Vector3DFloat& offset, uint8_t* bitmask0, uint8_t* bitmask1, int32_t vertexIndicesX0[],int32_t vertexIndicesY0[],int32_t vertexIndicesZ0[], int32_t vertexIndicesX1[],int32_t vertexIndicesY1[],int32_t vertexIndicesZ1[])
{
const uint8_t uStepSize = uLevel == 0 ? 1 : 1 << uLevel;
uint32_t indlist[12];
for(uint16_t uYVolSpace = regSlice.getLowerCorner().getY(); uYVolSpace < regSlice.getUpperCorner().getY(); uYVolSpace += uStepSize)
{
for(uint16_t uXVolSpace = regSlice.getLowerCorner().getX(); uXVolSpace < regSlice.getUpperCorner().getX(); uXVolSpace += uStepSize)
{
uint16_t uZVolSpace = regSlice.getLowerCorner().getZ();
volIter.setPosition(uXVolSpace,uYVolSpace,uZVolSpace);
//Current position
const uint16_t uXRegSpace = volIter.getPosX() - offset.getX();
const uint16_t uYRegSpace = volIter.getPosY() - offset.getY();
const uint16_t uZRegSpace = volIter.getPosZ() - offset.getZ();
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = bitmask0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
{
continue;
}
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
indlist[0] = vertexIndicesX0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
assert(indlist[0] != -1);
}
if (edgeTable[iCubeIndex] & 2)
{
indlist[1] = vertexIndicesY0[getIndex(uXRegSpace+uStepSize,uYRegSpace, regSlice.width()+1)];
assert(indlist[1] != -1);
}
if (edgeTable[iCubeIndex] & 4)
{
indlist[2] = vertexIndicesX0[getIndex(uXRegSpace,uYRegSpace+uStepSize, regSlice.width()+1)];
assert(indlist[2] != -1);
}
if (edgeTable[iCubeIndex] & 8)
{
indlist[3] = vertexIndicesY0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
assert(indlist[3] != -1);
}
if (edgeTable[iCubeIndex] & 16)
{
indlist[4] = vertexIndicesX1[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
assert(indlist[4] != -1);
}
if (edgeTable[iCubeIndex] & 32)
{
indlist[5] = vertexIndicesY1[getIndex(uXRegSpace+uStepSize,uYRegSpace, regSlice.width()+1)];
assert(indlist[5] != -1);
}
if (edgeTable[iCubeIndex] & 64)
{
indlist[6] = vertexIndicesX1[getIndex(uXRegSpace,uYRegSpace+uStepSize, regSlice.width()+1)];
assert(indlist[6] != -1);
}
if (edgeTable[iCubeIndex] & 128)
{
indlist[7] = vertexIndicesY1[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
assert(indlist[7] != -1);
}
if (edgeTable[iCubeIndex] & 256)
{
indlist[8] = vertexIndicesZ0[getIndex(uXRegSpace,uYRegSpace, regSlice.width()+1)];
assert(indlist[8] != -1);
}
if (edgeTable[iCubeIndex] & 512)
{
indlist[9] = vertexIndicesZ0[getIndex(uXRegSpace+uStepSize,uYRegSpace, regSlice.width()+1)];
assert(indlist[9] != -1);
}
if (edgeTable[iCubeIndex] & 1024)
{
indlist[10] = vertexIndicesZ0[getIndex(uXRegSpace+uStepSize,uYRegSpace+uStepSize, regSlice.width()+1)];
assert(indlist[10] != -1);
}
if (edgeTable[iCubeIndex] & 2048)
{
indlist[11] = vertexIndicesZ0[getIndex(uXRegSpace,uYRegSpace+uStepSize, regSlice.width()+1)];
assert(indlist[11] != -1);
}
for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3)
{
uint32_t ind0 = indlist[triTable[iCubeIndex][i ]];
uint32_t ind1 = indlist[triTable[iCubeIndex][i+1]];
uint32_t ind2 = indlist[triTable[iCubeIndex][i+2]];
singleMaterialPatch->addTriangle(ind0, ind1, ind2);
}//For each triangle
}//For each cell
}
}
}