566 lines
25 KiB
C++
566 lines
25 KiB
C++
/*******************************************************************************
|
|
Copyright (c) 2005-2009 David Williams
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any damages
|
|
arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
|
|
3. This notice may not be removed or altered from any source
|
|
distribution.
|
|
*******************************************************************************/
|
|
|
|
#include "PolyVoxImpl/Block.h"
|
|
#include "Log.h"
|
|
#include "VolumeSampler.h"
|
|
#include "Region.h"
|
|
#include "Vector.h"
|
|
|
|
#include <limits>
|
|
#include <cassert>
|
|
#include <cstring> //For memcpy
|
|
#include <list>
|
|
#include <stdexcept> //For invalid_argument
|
|
|
|
namespace PolyVox
|
|
{
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// Builds a volume of the desired dimensions
|
|
/// \param uWidth The desired width in voxels. This must be a power of two.
|
|
/// \param uHeight The desired height in voxels. This must be a power of two.
|
|
/// \param uDepth The desired depth in voxels. This must be a power of two.
|
|
/// \param uBlockSideLength The size of the blocks which make up the volume. Small
|
|
/// blocks are more likely to be homogeneous (so more easily shared) and have better
|
|
/// cache behaviour. However, there is a memory overhead per block so if they are
|
|
/// not shared it could actually be less efficient (this will depend on the data).
|
|
/// The size of the volume may also be a factor when choosing block size. Accept
|
|
/// the default if you are not sure what to choose here.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
Volume<VoxelType>::Volume(uint16_t uBlockSideLength)
|
|
{
|
|
//Create a volume of the right size.
|
|
resize(Region::MaxRegion,uBlockSideLength);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// Builds a volume of the desired dimensions
|
|
/// \param uWidth The desired width in voxels. This must be a power of two.
|
|
/// \param uHeight The desired height in voxels. This must be a power of two.
|
|
/// \param uDepth The desired depth in voxels. This must be a power of two.
|
|
/// \param uBlockSideLength The size of the blocks which make up the volume. Small
|
|
/// blocks are more likely to be homogeneous (so more easily shared) and have better
|
|
/// cache behaviour. However, there is a memory overhead per block so if they are
|
|
/// not shared it could actually be less efficient (this will depend on the data).
|
|
/// The size of the volume may also be a factor when choosing block size. Accept
|
|
/// the default if you are not sure what to choose here.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
Volume<VoxelType>::Volume(int32_t uWidth, int32_t uHeight, int32_t uDepth, uint16_t uBlockSideLength)
|
|
{
|
|
Region regValid(Vector3DInt32(0,0,0), Vector3DInt32(uWidth - 1,uHeight - 1,uDepth - 1));
|
|
resize(Region(Vector3DInt32(0,0,0), Vector3DInt32(uWidth - 1,uHeight - 1,uDepth - 1)), uBlockSideLength);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// Builds a volume of the desired dimensions
|
|
/// \param uWidth The desired width in voxels. This must be a power of two.
|
|
/// \param uHeight The desired height in voxels. This must be a power of two.
|
|
/// \param uDepth The desired depth in voxels. This must be a power of two.
|
|
/// \param uBlockSideLength The size of the blocks which make up the volume. Small
|
|
/// blocks are more likely to be homogeneous (so more easily shared) and have better
|
|
/// cache behaviour. However, there is a memory overhead per block so if they are
|
|
/// not shared it could actually be less efficient (this will depend on the data).
|
|
/// The size of the volume may also be a factor when choosing block size. Accept
|
|
/// the default if you are not sure what to choose here.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
Volume<VoxelType>::Volume(const Region& regValid, uint16_t uBlockSideLength)
|
|
{
|
|
//Create a volume of the right size.
|
|
resize(regValid,uBlockSideLength);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// Destroys the volume and frees any blocks which are not in use by other volumes.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
Volume<VoxelType>::~Volume()
|
|
{
|
|
typename std::map<Vector3DInt32, Block<VoxelType> >::iterator i;
|
|
for(i = m_pBlocks.begin(); i != m_pBlocks.end(); i = m_pBlocks.begin()) {
|
|
eraseBlock(i);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// The border value is returned whenever an atempt is made to read a voxel which
|
|
/// is outside the extents of the volume.
|
|
/// \return The value used for voxels outside of the volume
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
VoxelType Volume<VoxelType>::getBorderValue(void) const
|
|
{
|
|
return *m_pUncompressedBorderData;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// The result will always have a lower corner at (0,0,0) and an upper corner at one
|
|
/// less than the side length. For example, if a volume has dimensions 256x512x1024
|
|
/// then the upper corner of the enclosing region will be at (255,511,1023).
|
|
/// \return A Region representing the extent of the volume.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
Region Volume<VoxelType>::getEnclosingRegion(void) const
|
|
{
|
|
return m_regValidRegion;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// \return The width of the volume in voxels
|
|
/// \sa getHeight(), getDepth()
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
int32_t Volume<VoxelType>::getWidth(void) const
|
|
{
|
|
return m_regValidRegion.getWidth();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// \return The height of the volume in voxels
|
|
/// \sa getWidth(), getDepth()
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
int32_t Volume<VoxelType>::getHeight(void) const
|
|
{
|
|
return m_regValidRegion.getHeight();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// \return The depth of the volume in voxels
|
|
/// \sa getWidth(), getHeight()
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
int32_t Volume<VoxelType>::getDepth(void) const
|
|
{
|
|
return m_regValidRegion.getDepth();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// \return The length of the shortest side in voxels. For example, if a volume has
|
|
/// dimensions 256x512x1024 this function will return 256.
|
|
/// \sa getLongestSideLength(), getDiagonalLength()
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
int32_t Volume<VoxelType>::getShortestSideLength(void) const
|
|
{
|
|
return m_uShortestSideLength;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// \return The length of the longest side in voxels. For example, if a volume has
|
|
/// dimensions 256x512x1024 this function will return 1024.
|
|
/// \sa getShortestSideLength(), getDiagonalLength()
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
int32_t Volume<VoxelType>::getLongestSideLength(void) const
|
|
{
|
|
return m_uLongestSideLength;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// \return The length of the diagonal in voxels. For example, if a volume has
|
|
/// dimensions 256x512x1024 this function will return sqrt(256*256+512*512+1024*1024)
|
|
/// = 1173.139. This value is computed on volume creation so retrieving it is fast.
|
|
/// \sa getShortestSideLength(), getLongestSideLength()
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
float Volume<VoxelType>::getDiagonalLength(void) const
|
|
{
|
|
return m_fDiagonalLength;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// \param uXPos the \c x position of the voxel
|
|
/// \param uYPos the \c y position of the voxel
|
|
/// \param uZPos the \c z position of the voxel
|
|
/// \return the voxel value
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
VoxelType Volume<VoxelType>::getVoxelAt(int32_t uXPos, int32_t uYPos, int32_t uZPos) const
|
|
{
|
|
if(m_regValidRegion.containsPoint(Vector3DInt32(uXPos, uYPos, uZPos)))
|
|
{
|
|
const int32_t blockX = uXPos >> m_uBlockSideLengthPower;
|
|
const int32_t blockY = uYPos >> m_uBlockSideLengthPower;
|
|
const int32_t blockZ = uZPos >> m_uBlockSideLengthPower;
|
|
|
|
const uint16_t xOffset = uXPos - (blockX << m_uBlockSideLengthPower);
|
|
const uint16_t yOffset = uYPos - (blockY << m_uBlockSideLengthPower);
|
|
const uint16_t zOffset = uZPos - (blockZ << m_uBlockSideLengthPower);
|
|
|
|
Block<VoxelType>* pUncompressedBlock = getUncompressedBlock(blockX, blockY, blockZ);
|
|
|
|
return pUncompressedBlock->getVoxelAt(xOffset,yOffset,zOffset);
|
|
}
|
|
else
|
|
{
|
|
return getBorderValue();
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// \param v3dPos the 3D position of the voxel
|
|
/// \return the voxel value
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
VoxelType Volume<VoxelType>::getVoxelAt(const Vector3DInt32& v3dPos) const
|
|
{
|
|
return getVoxelAt(v3dPos.getX(), v3dPos.getY(), v3dPos.getZ());
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// Increasing the size of the block cache will increase memory but may improve performance.
|
|
/// You may want to set this to a large value (e.g. 1024) when you are first loading your
|
|
/// volume data and then set it to a smaller value (e.g.64) for general processing.
|
|
/// \param uBlockCacheSize The number of blocks for which uncompressed data can be cached.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
void Volume<VoxelType>::setBlockCacheSize(uint16_t uBlockCacheSize)
|
|
{
|
|
clearBlockCache();
|
|
|
|
m_uMaxUncompressedBlockCacheSize = uBlockCacheSize;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// Increasing the number of blocks in memory causes fewer calls to load/unload
|
|
/// \param uMaxBlocks The number of blocks
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
void Volume<VoxelType>::setMaxBlocksLoaded(uint16_t uMaxBlocks)
|
|
{
|
|
if(uMaxBlocks < m_pBlocks.size()) {
|
|
std::cout << uMaxBlocks << ", " << m_pBlocks.size() << ", " << m_pBlocks.size() - uMaxBlocks << std::endl;
|
|
// we need to unload some blocks
|
|
for(int j = 0; j < m_pBlocks.size() - uMaxBlocks; j++) {
|
|
typename std::map<Vector3DInt32, Block<VoxelType> >::iterator i;
|
|
typename std::map<Vector3DInt32, Block<VoxelType> >::iterator itUnloadBlock = m_pBlocks.begin();
|
|
for(i = m_pBlocks.begin(); i != m_pBlocks.end(); i++) {
|
|
if(i->second.m_uTimestamp < itUnloadBlock->second.m_uTimestamp) {
|
|
itUnloadBlock = i;
|
|
}
|
|
}
|
|
eraseBlock(itUnloadBlock);
|
|
}
|
|
}
|
|
m_uMaxBlocksLoaded = uMaxBlocks;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// \param tBorder The value to use for voxels outside the volume.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
void Volume<VoxelType>::setBorderValue(const VoxelType& tBorder)
|
|
{
|
|
/*Block<VoxelType>* pUncompressedBorderBlock = getUncompressedBlock(&m_pBorderBlock);
|
|
return pUncompressedBorderBlock->fill(tBorder);*/
|
|
std::fill(m_pUncompressedBorderData, m_pUncompressedBorderData + m_uBlockSideLength * m_uBlockSideLength * m_uBlockSideLength, tBorder);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// \param uXPos the \c x position of the voxel
|
|
/// \param uYPos the \c y position of the voxel
|
|
/// \param uZPos the \c z position of the voxel
|
|
/// \param tValue the value to which the voxel will be set
|
|
/// \return whether the requested position is inside the volume
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
bool Volume<VoxelType>::setVoxelAt(int32_t uXPos, int32_t uYPos, int32_t uZPos, VoxelType tValue)
|
|
{
|
|
assert(m_regValidRegion.containsPoint(Vector3DInt32(uXPos, uYPos, uZPos)));
|
|
|
|
const int32_t blockX = uXPos >> m_uBlockSideLengthPower;
|
|
const int32_t blockY = uYPos >> m_uBlockSideLengthPower;
|
|
const int32_t blockZ = uZPos >> m_uBlockSideLengthPower;
|
|
|
|
const uint16_t xOffset = uXPos - (blockX << m_uBlockSideLengthPower);
|
|
const uint16_t yOffset = uYPos - (blockY << m_uBlockSideLengthPower);
|
|
const uint16_t zOffset = uZPos - (blockZ << m_uBlockSideLengthPower);
|
|
|
|
Block<VoxelType>* pUncompressedBlock = getUncompressedBlock(blockX, blockY, blockZ);
|
|
|
|
pUncompressedBlock->setVoxelAt(xOffset,yOffset,zOffset, tValue);
|
|
|
|
//Return true to indicate that we modified a voxel.
|
|
return true;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// \param v3dPos the 3D position of the voxel
|
|
/// \param tValue the value to which the voxel will be set
|
|
/// \return whether the requested position is inside the volume
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
bool Volume<VoxelType>::setVoxelAt(const Vector3DInt32& v3dPos, VoxelType tValue)
|
|
{
|
|
return setVoxelAt(v3dPos.getX(), v3dPos.getY(), v3dPos.getZ(), tValue);
|
|
}
|
|
|
|
template <typename VoxelType>
|
|
void Volume<VoxelType>::clearBlockCache(void)
|
|
{
|
|
for(uint32_t ct = 0; ct < m_vecUncompressedBlockCache.size(); ct++)
|
|
{
|
|
m_pBlocks[m_vecUncompressedBlockCache[ct].v3dBlockIndex].compress();
|
|
delete[] m_vecUncompressedBlockCache[ct].data;
|
|
}
|
|
m_vecUncompressedBlockCache.clear();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// Note: Calling this function will destroy all existing data in the volume.
|
|
/// \param uWidth The desired width in voxels. This must be a power of two.
|
|
/// \param uHeight The desired height in voxels. This must be a power of two.
|
|
/// \param uDepth The desired depth in voxels. This must be a power of two.
|
|
/// \param uBlockSideLength The size of the blocks which make up the volume. Small
|
|
/// blocks are more likely to be homogeneous (so more easily shared) and have better
|
|
/// cache behaviour. However, there is a memory overhead per block so if they are
|
|
/// not shared it could actually be less efficient (this will depend on the data).
|
|
/// The size of the volume may also be a factor when choosing block size. Accept
|
|
/// the default if you are not sure what to choose here.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <typename VoxelType>
|
|
void Volume<VoxelType>::resize(const Region& regValidRegion, uint16_t uBlockSideLength)
|
|
{
|
|
//Debug mode validation
|
|
assert(uBlockSideLength > 0);
|
|
|
|
//Release mode validation
|
|
if(uBlockSideLength == 0)
|
|
{
|
|
throw std::invalid_argument("Block side length cannot be zero.");
|
|
}
|
|
if(!isPowerOf2(uBlockSideLength))
|
|
{
|
|
throw std::invalid_argument("Block side length must be a power of two.");
|
|
}
|
|
|
|
m_uTimestamper = 0;
|
|
m_uMaxUncompressedBlockCacheSize = 256;
|
|
m_uBlockSideLength = uBlockSideLength;
|
|
m_pUncompressedBorderData = 0;
|
|
m_uMaxBlocksLoaded = 4096;
|
|
m_v3dLastAccessedBlockPos = Vector3DInt32((std::numeric_limits<int32_t>::max)(), (std::numeric_limits<int32_t>::max)(), (std::numeric_limits<int32_t>::max)()); //An invalid index
|
|
|
|
m_regValidRegion = regValidRegion;
|
|
|
|
m_regValidRegionInBlocks.setLowerCorner(m_regValidRegion.getLowerCorner() / static_cast<int32_t>(uBlockSideLength));
|
|
m_regValidRegionInBlocks.setUpperCorner(m_regValidRegion.getUpperCorner() / static_cast<int32_t>(uBlockSideLength));
|
|
|
|
setBlockCacheSize(m_uMaxUncompressedBlockCacheSize);
|
|
|
|
//Clear the previous data
|
|
m_pBlocks.clear();
|
|
m_pUncompressedTimestamps.clear();
|
|
|
|
//Compute the block side length
|
|
m_uBlockSideLength = uBlockSideLength;
|
|
m_uBlockSideLengthPower = logBase2(m_uBlockSideLength);
|
|
|
|
//Clear the previous data
|
|
m_pBlocks.clear();
|
|
m_pUncompressedTimestamps.clear();
|
|
|
|
m_pUncompressedTimestamps.resize(m_uMaxUncompressedBlockCacheSize, 0);
|
|
|
|
//Create the border block
|
|
m_pUncompressedBorderData = new VoxelType[m_uBlockSideLength * m_uBlockSideLength * m_uBlockSideLength];
|
|
std::fill(m_pUncompressedBorderData, m_pUncompressedBorderData + m_uBlockSideLength * m_uBlockSideLength * m_uBlockSideLength, VoxelType());
|
|
|
|
//Other properties we might find useful later
|
|
m_uLongestSideLength = (std::max)((std::max)(getWidth(),getHeight()),getDepth());
|
|
m_uShortestSideLength = (std::min)((std::min)(getWidth(),getHeight()),getDepth());
|
|
m_fDiagonalLength = sqrtf(static_cast<float>(getWidth() * getWidth() + getHeight() * getHeight() + getDepth() * getDepth()));
|
|
}
|
|
|
|
template <typename VoxelType>
|
|
void Volume<VoxelType>::eraseBlock(typename std::map<Vector3DInt32, Block<VoxelType> >::iterator itBlock) const
|
|
{
|
|
Vector3DInt32 v3dPos = itBlock->first;
|
|
Vector3DInt32 v3dLower(v3dPos.getX() << m_uBlockSideLengthPower, v3dPos.getY() << m_uBlockSideLengthPower, v3dPos.getZ() << m_uBlockSideLengthPower);
|
|
Vector3DInt32 v3dUpper = v3dLower + Vector3DInt32(m_uBlockSideLength-1, m_uBlockSideLength-1, m_uBlockSideLength-1);
|
|
Region reg(v3dLower, v3dUpper);
|
|
if(m_UnloadCallback) {
|
|
m_UnloadCallback(std::ref(*this), reg);
|
|
}
|
|
m_pBlocks.erase(itBlock);
|
|
}
|
|
|
|
template <typename VoxelType>
|
|
bool Volume<VoxelType>::load_setVoxelAt(int32_t uXPos, int32_t uYPos, int32_t uZPos, VoxelType tValue) const
|
|
{
|
|
const int32_t blockX = uXPos >> m_uBlockSideLengthPower;
|
|
const int32_t blockY = uYPos >> m_uBlockSideLengthPower;
|
|
const int32_t blockZ = uZPos >> m_uBlockSideLengthPower;
|
|
assert(blockX == m_v3dLoadBlockPos.getX());
|
|
assert(blockY == m_v3dLoadBlockPos.getY());
|
|
assert(blockZ == m_v3dLoadBlockPos.getZ());
|
|
if(blockX != m_v3dLoadBlockPos.getX() && blockY != m_v3dLoadBlockPos.getY() && blockZ != m_v3dLoadBlockPos.getZ()) {
|
|
throw(std::invalid_argument("you are not allowed to write to any voxels outside the designated region"));
|
|
}
|
|
|
|
const uint16_t xOffset = uXPos - (blockX << m_uBlockSideLengthPower);
|
|
const uint16_t yOffset = uYPos - (blockY << m_uBlockSideLengthPower);
|
|
const uint16_t zOffset = uZPos - (blockZ << m_uBlockSideLengthPower);
|
|
|
|
Block<VoxelType>* pUncompressedBlock = getUncompressedBlock(blockX, blockY, blockZ);
|
|
|
|
pUncompressedBlock->setVoxelAt(xOffset,yOffset,zOffset, tValue);
|
|
|
|
//Return true to indicate that we modified a voxel.
|
|
return true;
|
|
}
|
|
|
|
|
|
template <typename VoxelType>
|
|
Block<VoxelType>* Volume<VoxelType>::getUncompressedBlock(int32_t uBlockX, int32_t uBlockY, int32_t uBlockZ) const
|
|
{
|
|
Vector3DInt32 v3dBlockPos(uBlockX, uBlockY, uBlockZ);
|
|
typename std::map<Vector3DInt32, Block<VoxelType> >::iterator itBlock = m_pBlocks.find(v3dBlockPos);
|
|
// check whether the block is already loaded
|
|
if(itBlock == m_pBlocks.end()) {
|
|
// it is not loaded
|
|
// check wether another block needs to be unloaded before this one can be loaded
|
|
if(m_pBlocks.size() == m_uMaxBlocksLoaded) {
|
|
// find the least recently used block
|
|
typename std::map<Vector3DInt32, Block<VoxelType> >::iterator i;
|
|
typename std::map<Vector3DInt32, Block<VoxelType> >::iterator itUnloadBlock = m_pBlocks.begin();
|
|
for(i = m_pBlocks.begin(); i != m_pBlocks.end(); i++) {
|
|
if(i->second.m_uTimestamp < itUnloadBlock->second.m_uTimestamp) {
|
|
itUnloadBlock = i;
|
|
}
|
|
}
|
|
eraseBlock(itUnloadBlock);
|
|
}
|
|
Vector3DInt32 v3dLower(v3dBlockPos.getX() << m_uBlockSideLengthPower, v3dBlockPos.getY() << m_uBlockSideLengthPower, v3dBlockPos.getZ() << m_uBlockSideLengthPower);
|
|
Vector3DInt32 v3dUpper = v3dLower + Vector3DInt32(m_uBlockSideLength-1, m_uBlockSideLength-1, m_uBlockSideLength-1);
|
|
Region reg(v3dLower, v3dUpper);
|
|
// create the new block
|
|
m_pBlocks[v3dBlockPos] = Block<VoxelType>(m_uBlockSideLength);
|
|
itBlock = m_pBlocks.find(v3dBlockPos);
|
|
// fill it with data (well currently fill it with nothingness)
|
|
// "load" will actually call setVoxel, which will in turn call this function again but the block will be found
|
|
// so this if(itBlock == m_pBlocks.end()) never is entered
|
|
|
|
m_v3dLoadBlockPos = v3dBlockPos;
|
|
if(m_LoadCallback) {
|
|
m_LoadCallback(std::ref(*this), reg);
|
|
}
|
|
m_v3dLoadBlockPos = Vector3DInt32((std::numeric_limits<int32_t>::max)(), (std::numeric_limits<int32_t>::max)(), (std::numeric_limits<int32_t>::max)());
|
|
}
|
|
|
|
//Get the block
|
|
Block<VoxelType>* block = &(itBlock->second);
|
|
|
|
//Check if we have the same block as last time, if so there's no need to even update
|
|
//the time stamp. If we updated it everytime then that would be every time we touched
|
|
//a voxel, which would overflow a uint32_t and require us to use a uint64_t instead.
|
|
if(v3dBlockPos == m_v3dLastAccessedBlockPos)
|
|
{
|
|
return block;
|
|
}
|
|
m_v3dLastAccessedBlockPos = v3dBlockPos;
|
|
|
|
m_uTimestamper++;
|
|
block->m_uTimestamp = m_uTimestamper;
|
|
|
|
if(block->m_bIsCompressed == false)
|
|
{
|
|
m_pUncompressedTimestamps[block->m_uUncompressedIndex] = m_uTimestamper;
|
|
return block;
|
|
}
|
|
|
|
//Currently we find the oldest block by iterating over the whole array. Of course we could store the blocks sorted by
|
|
//timestamp (set, priority_queue, etc) but then we'll need to move them around as the timestamp changes. Can come back
|
|
//to this if it proves to be a bottleneck (compraed to the cost of actually doing the compression/decompression).
|
|
uint32_t uUncompressedBlockIndex = (std::numeric_limits<uint32_t>::max)();
|
|
assert(m_vecUncompressedBlockCache.size() <= m_uMaxUncompressedBlockCacheSize);
|
|
if(m_vecUncompressedBlockCache.size() == m_uMaxUncompressedBlockCacheSize)
|
|
{
|
|
int32_t leastRecentlyUsedBlockIndex = -1;
|
|
uint32_t uLeastRecentTimestamp = (std::numeric_limits<uint32_t>::max)(); // you said not int64 ;)
|
|
for(uint32_t ct = 0; ct < m_vecUncompressedBlockCache.size(); ct++)
|
|
{
|
|
if(m_pUncompressedTimestamps[ct] < uLeastRecentTimestamp)
|
|
{
|
|
uLeastRecentTimestamp = m_pUncompressedTimestamps[ct];
|
|
leastRecentlyUsedBlockIndex = ct;
|
|
}
|
|
}
|
|
|
|
uUncompressedBlockIndex = leastRecentlyUsedBlockIndex;
|
|
m_pBlocks[m_vecUncompressedBlockCache[leastRecentlyUsedBlockIndex].v3dBlockIndex].compress();
|
|
m_vecUncompressedBlockCache[leastRecentlyUsedBlockIndex].v3dBlockIndex = v3dBlockPos;
|
|
}
|
|
else
|
|
{
|
|
UncompressedBlock uncompressedBlock;
|
|
//uncompressedBlock.block = block;
|
|
uncompressedBlock.v3dBlockIndex = v3dBlockPos;
|
|
uncompressedBlock.data = new VoxelType[m_uBlockSideLength * m_uBlockSideLength * m_uBlockSideLength];
|
|
m_vecUncompressedBlockCache.push_back(uncompressedBlock);
|
|
uUncompressedBlockIndex = m_vecUncompressedBlockCache.size() - 1;
|
|
}
|
|
block->m_uUncompressedIndex = uUncompressedBlockIndex;
|
|
block->uncompress(m_vecUncompressedBlockCache[uUncompressedBlockIndex].data);
|
|
|
|
return block;
|
|
}
|
|
|
|
template <typename VoxelType>
|
|
float Volume<VoxelType>::calculateCompressionRatio(void)
|
|
{
|
|
float fRawSize = m_pBlocks.size() * m_uBlockSideLength * m_uBlockSideLength* m_uBlockSideLength * sizeof(VoxelType);
|
|
float fCompressedSize = calculateSizeInBytes();
|
|
return fCompressedSize/fRawSize;
|
|
}
|
|
|
|
template <typename VoxelType>
|
|
uint32_t Volume<VoxelType>::calculateSizeInBytes(void)
|
|
{
|
|
uint32_t uSizeInBytes = sizeof(Volume);
|
|
|
|
//Memory used by the blocks
|
|
typename std::map<Vector3DInt32, Block<VoxelType> >::iterator i;
|
|
for(i = m_pBlocks.begin(); i != m_pBlocks.end(); i++) {
|
|
i->second.calculateSizeInBytes();
|
|
}
|
|
|
|
//Memory used by the block cache.
|
|
uSizeInBytes += m_vecUncompressedBlockCache.capacity() * sizeof(UncompressedBlock);
|
|
uSizeInBytes += m_vecUncompressedBlockCache.size() * m_uBlockSideLength * m_uBlockSideLength * m_uBlockSideLength * sizeof(VoxelType);
|
|
uSizeInBytes += m_pUncompressedTimestamps.capacity() * sizeof(uint32_t);
|
|
|
|
//Memory used by border data.
|
|
if(m_pUncompressedBorderData)
|
|
{
|
|
uSizeInBytes += m_uBlockSideLength * m_uBlockSideLength * m_uBlockSideLength * sizeof(VoxelType);
|
|
}
|
|
|
|
return uSizeInBytes;
|
|
}
|
|
|
|
}
|