polyvox/source/PolyVoxSceneManager.cpp
David Williams 545aa92d14 Switched to floats for vetex positions ready for mesh smoothing.
Added new way to detect duplicate vertices but it's not enabled as it doesn't work yet...
2008-04-21 18:53:56 +00:00

734 lines
27 KiB
C++

/******************************************************************************
This file is part of a voxel plugin for OGRE
Copyright (C) 2006 David Williams
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
******************************************************************************/
#include "GradientEstimators.h"
#include "IndexedSurfacePatch.h"
#include "MarchingCubesTables.h"
#include "PolyVoxSceneManager.h"
#include "RegionGeometry.h"
#include "SurfaceVertex.h"
#include "Vector.h"
#include "Volume.h"
#include "VolumeIterator.h"
using namespace boost;
namespace PolyVox
{
//////////////////////////////////////////////////////////////////////////
// PolyVoxSceneManager
//////////////////////////////////////////////////////////////////////////
PolyVoxSceneManager::PolyVoxSceneManager()
:volumeData(0)
,useNormalSmoothing(false)
,normalSmoothingFilterSize(1)
,m_normalGenerationMethod(SOBEL)
,m_bHaveGeneratedMeshes(false)
{
//sceneNodes.clear();
}
PolyVoxSceneManager::~PolyVoxSceneManager()
{
}
std::list<RegionGeometry> PolyVoxSceneManager::getChangedRegionGeometry(void)
{
std::list<RegionGeometry> listChangedRegionGeometry;
//Regenerate meshes.
for(uint16_t regionZ = 0; regionZ < POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS; ++regionZ)
//for(uint16_t regionZ = 6; regionZ < 7; ++regionZ)
{
for(uint16_t regionY = 0; regionY < POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS; ++regionY)
//for(uint16_t regionY = 6; regionY < 7; ++regionY)
{
for(uint16_t regionX = 0; regionX < POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS; ++regionX)
//for(uint16_t regionX = 3; regionX < 4; ++regionX)
{
if(surfaceUpToDate[regionX][regionY][regionZ] == false)
{
//Generate the surface
RegionGeometry regionGeometry;
regionGeometry.m_patchSingleMaterial = new IndexedSurfacePatch(false);
regionGeometry.m_patchMultiMaterial = new IndexedSurfacePatch(true);
regionGeometry.m_v3dRegionPosition = Vector3DInt32(regionX, regionY, regionZ);
generateMeshDataForRegion(regionX,regionY,regionZ, regionGeometry.m_patchSingleMaterial, regionGeometry.m_patchMultiMaterial);
regionGeometry.m_bContainsSingleMaterialPatch = regionGeometry.m_patchSingleMaterial->m_vecVertices.size() > 0;
regionGeometry.m_bContainsMultiMaterialPatch = regionGeometry.m_patchMultiMaterial->m_vecVertices.size() > 0;
regionGeometry.m_bIsEmpty = ((regionGeometry.m_patchSingleMaterial->m_vecVertices.size() == 0) && (regionGeometry.m_patchMultiMaterial->m_vecTriangleIndices.size() == 0));
listChangedRegionGeometry.push_back(regionGeometry);
}
}
}
}
return listChangedRegionGeometry;
}
void PolyVoxSceneManager::setAllUpToDateFlagsTo(bool newUpToDateValue)
{
for(uint16_t blockZ = 0; blockZ < POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS; ++blockZ)
{
for(uint16_t blockY = 0; blockY < POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS; ++blockY)
{
for(uint16_t blockX = 0; blockX < POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS; ++blockX)
{
surfaceUpToDate[blockX][blockY][blockZ] = newUpToDateValue;
}
}
}
}
void PolyVoxSceneManager::createSphereAt(Vector3DFloat centre, float radius, uint8_t value, bool painting)
{
int firstX = static_cast<int>(std::floor(centre.x() - radius));
int firstY = static_cast<int>(std::floor(centre.y() - radius));
int firstZ = static_cast<int>(std::floor(centre.z() - radius));
int lastX = static_cast<int>(std::ceil(centre.x() + radius));
int lastY = static_cast<int>(std::ceil(centre.y() + radius));
int lastZ = static_cast<int>(std::ceil(centre.z() + radius));
float radiusSquared = radius * radius;
//Check bounds
firstX = std::max(firstX,0);
firstY = std::max(firstY,0);
firstZ = std::max(firstZ,0);
lastX = std::min(lastX,int(POLYVOX_VOLUME_SIDE_LENGTH-1));
lastY = std::min(lastY,int(POLYVOX_VOLUME_SIDE_LENGTH-1));
lastZ = std::min(lastZ,int(POLYVOX_VOLUME_SIDE_LENGTH-1));
VolumeIterator<boost::uint8_t> volIter(*volumeData);
volIter.setValidRegion(firstX,firstY,firstZ,lastX,lastY,lastZ);
volIter.setPosition(firstX,firstY,firstZ);
while(volIter.isValidForRegion())
{
//if((volIter.getPosX()*volIter.getPosX()+volIter.getPosY()*volIter.getPosY()+volIter.getPosZ()*volIter.getPosZ()) < radiusSquared)
if((centre - Vector3DFloat(volIter.getPosX(),volIter.getPosY(),volIter.getPosZ())).lengthSquared() <= radiusSquared)
{
if(painting)
{
if(volIter.getVoxel() != 0)
{
volIter.setVoxel(value);
//volIter.setVoxelAt(volIter.getPosX(),volIter.getPosY(),volIter.getPosZ(),value);
}
}
else
{
volIter.setVoxel(value);
//volIter.setVoxelAt(volIter.getPosX(),volIter.getPosY(),volIter.getPosZ(),value);
}
//markVoxelChanged(volIter.getPosX(),volIter.getPosY(),volIter.getPosZ()); //FIXME - create a version of this function to mark larger regions at a time.
}
volIter.moveForwardInRegion();
}
markRegionChanged(firstX,firstY,firstZ,lastX,lastY,lastZ);
}
void PolyVoxSceneManager::generateLevelVolume(void)
{
//volumeData = VolumePtr(new Volume);
volumeData = new Volume<boost::uint8_t>();
VolumeIterator<boost::uint8_t> volIter(*volumeData);
for(uint16_t z = 0; z < POLYVOX_VOLUME_SIDE_LENGTH; ++z)
{
for(uint16_t y = 0; y < POLYVOX_VOLUME_SIDE_LENGTH; ++y)
{
for(uint16_t x = 0; x < POLYVOX_VOLUME_SIDE_LENGTH; ++x)
{
volIter.setPosition(x,y,z);
if((x/16+y/16+z/16)%2 == 0)
volIter.setVoxel(4);
else
volIter.setVoxel(8);
}
}
}
for(uint16_t z = 0; z < POLYVOX_VOLUME_SIDE_LENGTH; ++z)
{
for(uint16_t y = 0; y < POLYVOX_VOLUME_SIDE_LENGTH; ++y)
{
for(uint16_t x = 0; x < POLYVOX_VOLUME_SIDE_LENGTH; ++x)
{
if(
(z<62)||
(z>193)||
(y<78)||
(y>177)||
(x<30)||
(x>225)
)
{
volIter.setPosition(x,y,z);
volIter.setVoxel(2);
}
}
}
}
//Rooms
Vector3DFloat centre(128,128,128);
Vector3DFloat v3dSize(192,96,128);
uint16_t uHalfX = static_cast<uint16_t>(v3dSize.x() / 2);
uint16_t uHalfY = static_cast<uint16_t>(v3dSize.y() / 2);
uint16_t uHalfZ = static_cast<uint16_t>(v3dSize.z() / 2);
for(uint16_t z = static_cast<uint16_t>(centre.z()) - uHalfZ; z < static_cast<uint16_t>(centre.z()) + uHalfZ; z++)
{
for(uint16_t y = static_cast<uint16_t>(centre.y()) - uHalfY; y < static_cast<uint16_t>(centre.y()) + uHalfY; y++)
{
for(uint16_t x = static_cast<uint16_t>(centre.x()) - uHalfX; x < static_cast<uint16_t>(centre.x()) + uHalfX; x++)
{
volIter.setPosition(x,y,z);
volIter.setVoxel(0);
}
}
}
for(uint16_t z = 0; z < POLYVOX_VOLUME_SIDE_LENGTH; ++z)
{
for(uint16_t y = 0; y < POLYVOX_VOLUME_SIDE_LENGTH; ++y)
{
for(uint16_t x = 0; x < POLYVOX_VOLUME_SIDE_LENGTH; ++x)
{
if(
(x%64 < 8) &&
(y < 128) &&
(z>=62)&&
(z<=193)&&
(y>=78)&&
(y<=177)&&
(x>=30)&&
(x<=225)
)
{
volIter.setPosition(x,y,z);
volIter.setVoxel(1);
}
}
}
}
}
void PolyVoxSceneManager::generateMeshDataForRegion(const uint16_t regionX, const uint16_t regionY, const uint16_t regionZ, IndexedSurfacePatch* singleMaterialPatch, IndexedSurfacePatch* multiMaterialPatch) const
{
//First and last voxels in the region
const uint16_t firstX = regionX * POLYVOX_REGION_SIDE_LENGTH;
const uint16_t firstY = regionY * POLYVOX_REGION_SIDE_LENGTH;
const uint16_t firstZ = regionZ * POLYVOX_REGION_SIDE_LENGTH;
const uint16_t lastX = (std::min)(firstX + POLYVOX_REGION_SIDE_LENGTH-1,static_cast<uint32_t>(POLYVOX_VOLUME_SIDE_LENGTH-2));
const uint16_t lastY = (std::min)(firstY + POLYVOX_REGION_SIDE_LENGTH-1,static_cast<uint32_t>(POLYVOX_VOLUME_SIDE_LENGTH-2));
const uint16_t lastZ = (std::min)(firstZ + POLYVOX_REGION_SIDE_LENGTH-1,static_cast<uint32_t>(POLYVOX_VOLUME_SIDE_LENGTH-2));
//Offset from lower block corner
const Vector3DFloat offset(firstX,firstY,firstZ);
Vector3DFloat vertlist[12];
uint8_t vertMaterials[12];
VolumeIterator<boost::uint8_t> volIter(*volumeData);
volIter.setValidRegion(firstX,firstY,firstZ,lastX,lastY,lastZ);
//////////////////////////////////////////////////////////////////////////
//Get mesh data
//////////////////////////////////////////////////////////////////////////
//Iterate over each cell in the region
for(volIter.setPosition(firstX,firstY,firstZ);volIter.isValidForRegion();volIter.moveForwardInRegion())
{
//Current position
const uint16_t x = volIter.getPosX();
const uint16_t y = volIter.getPosY();
const uint16_t z = volIter.getPosZ();
//Voxels values
const uint8_t v000 = volIter.getVoxel();
const uint8_t v100 = volIter.peekVoxel1px0py0pz();
const uint8_t v010 = volIter.peekVoxel0px1py0pz();
const uint8_t v110 = volIter.peekVoxel1px1py0pz();
const uint8_t v001 = volIter.peekVoxel0px0py1pz();
const uint8_t v101 = volIter.peekVoxel1px0py1pz();
const uint8_t v011 = volIter.peekVoxel0px1py1pz();
const uint8_t v111 = volIter.peekVoxel1px1py1pz();
//Determine the index into the edge table which tells us which vertices are inside of the surface
uint8_t iCubeIndex = 0;
if (v000 == 0) iCubeIndex |= 1;
if (v100 == 0) iCubeIndex |= 2;
if (v110 == 0) iCubeIndex |= 4;
if (v010 == 0) iCubeIndex |= 8;
if (v001 == 0) iCubeIndex |= 16;
if (v101 == 0) iCubeIndex |= 32;
if (v111 == 0) iCubeIndex |= 64;
if (v011 == 0) iCubeIndex |= 128;
/* Cube is entirely in/out of the surface */
if (edgeTable[iCubeIndex] == 0)
{
continue;
}
/* Find the vertices where the surface intersects the cube */
if (edgeTable[iCubeIndex] & 1)
{
vertlist[0].setX(x + 0.5f);
vertlist[0].setY(y);
vertlist[0].setZ(z);
vertMaterials[0] = v000 | v100; //Because one of these is 0, the or operation takes the max.
}
if (edgeTable[iCubeIndex] & 2)
{
vertlist[1].setX(x + 1.0f);
vertlist[1].setY(y + 0.5f);
vertlist[1].setZ(z);
vertMaterials[1] = v100 | v110;
}
if (edgeTable[iCubeIndex] & 4)
{
vertlist[2].setX(x + 0.5f);
vertlist[2].setY(y + 1.0f);
vertlist[2].setZ(z);
vertMaterials[2] = v010 | v110;
}
if (edgeTable[iCubeIndex] & 8)
{
vertlist[3].setX(x);
vertlist[3].setY(y + 0.5f);
vertlist[3].setZ(z);
vertMaterials[3] = v000 | v010;
}
if (edgeTable[iCubeIndex] & 16)
{
vertlist[4].setX(x + 0.5f);
vertlist[4].setY(y);
vertlist[4].setZ(z + 1.0f);
vertMaterials[4] = v001 | v101;
}
if (edgeTable[iCubeIndex] & 32)
{
vertlist[5].setX(x + 1.0f);
vertlist[5].setY(y + 0.5f);
vertlist[5].setZ(z + 1.0f);
vertMaterials[5] = v101 | v111;
}
if (edgeTable[iCubeIndex] & 64)
{
vertlist[6].setX(x + 0.5f);
vertlist[6].setY(y + 1.0f);
vertlist[6].setZ(z + 1.0f);
vertMaterials[6] = v011 | v111;
}
if (edgeTable[iCubeIndex] & 128)
{
vertlist[7].setX(x);
vertlist[7].setY(y + 0.5f);
vertlist[7].setZ(z + 1.0f);
vertMaterials[7] = v001 | v011;
}
if (edgeTable[iCubeIndex] & 256)
{
vertlist[8].setX(x);
vertlist[8].setY(y);
vertlist[8].setZ(z + 0.5f);
vertMaterials[8] = v000 | v001;
}
if (edgeTable[iCubeIndex] & 512)
{
vertlist[9].setX(x + 1.0f);
vertlist[9].setY(y);
vertlist[9].setZ(z + 0.5f);
vertMaterials[9] = v100 | v101;
}
if (edgeTable[iCubeIndex] & 1024)
{
vertlist[10].setX(x + 1.0f);
vertlist[10].setY(y + 1.0f);
vertlist[10].setZ(z + 0.5f);
vertMaterials[10] = v110 | v111;
}
if (edgeTable[iCubeIndex] & 2048)
{
vertlist[11].setX(x);
vertlist[11].setY(y + 1.0f);
vertlist[11].setZ(z + 0.5f);
vertMaterials[11] = v010 | v011;
}
for (int i=0;triTable[iCubeIndex][i]!=-1;i+=3)
{
//The three vertices forming a triangle
const Vector3DFloat vertex0 = vertlist[triTable[iCubeIndex][i ]] - offset;
const Vector3DFloat vertex1 = vertlist[triTable[iCubeIndex][i+1]] - offset;
const Vector3DFloat vertex2 = vertlist[triTable[iCubeIndex][i+2]] - offset;
//Cast to floats and divide by two.
//const Vector3DFloat vertex0AsFloat = (static_cast<Vector3DFloat>(vertex0) / 2.0f) - offset;
//const Vector3DFloat vertex1AsFloat = (static_cast<Vector3DFloat>(vertex1) / 2.0f) - offset;
//const Vector3DFloat vertex2AsFloat = (static_cast<Vector3DFloat>(vertex2) / 2.0f) - offset;
const uint8_t material0 = vertMaterials[triTable[iCubeIndex][i ]];
const uint8_t material1 = vertMaterials[triTable[iCubeIndex][i+1]];
const uint8_t material2 = vertMaterials[triTable[iCubeIndex][i+2]];
//If all the materials are the same, we just need one triangle for that material with all the alphas set high.
if((material0 == material1) && (material1 == material2))
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1,1.0);
singleMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
else if(material0 == material1)
{
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,1.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,0.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material2 + 0.1,0.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material2 + 0.1,0.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1,1.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
}
else if(material0 == material2)
{
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,0.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,1.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1,0.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1,0.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
}
else if(material1 == material2)
{
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1,0.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1,1.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,0.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,0.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
}
else
{
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material0 + 0.1,1.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material0 + 0.1,0.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material0 + 0.1,0.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material1 + 0.1,0.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material1 + 0.1,1.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material1 + 0.1,0.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
{
SurfaceVertex surfaceVertex0Alpha1(vertex0,material2 + 0.1,0.0);
SurfaceVertex surfaceVertex1Alpha1(vertex1,material2 + 0.1,0.0);
SurfaceVertex surfaceVertex2Alpha1(vertex2,material2 + 0.1,1.0);
multiMaterialPatch->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
}
}
//If there not all the same, we need one triangle for each unique material.
//We'll also need some vertices with low alphas for blending.
/*else
{
SurfaceVertex surfaceVertex0Alpha0(vertex0,0.0);
SurfaceVertex surfaceVertex1Alpha0(vertex1,0.0);
SurfaceVertex surfaceVertex2Alpha0(vertex2,0.0);
if(material0 == material1)
{
surfacePatchMapResult[material0]->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha1, surfaceVertex2Alpha0);
surfacePatchMapResult[material2]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha0, surfaceVertex2Alpha1);
}
else if(material1 == material2)
{
surfacePatchMapResult[material1]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha1, surfaceVertex2Alpha1);
surfacePatchMapResult[material0]->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha0, surfaceVertex2Alpha0);
}
else if(material2 == material0)
{
surfacePatchMapResult[material0]->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha0, surfaceVertex2Alpha1);
surfacePatchMapResult[material1]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha1, surfaceVertex2Alpha0);
}
else
{
surfacePatchMapResult[material0]->addTriangle(surfaceVertex0Alpha1, surfaceVertex1Alpha0, surfaceVertex2Alpha0);
surfacePatchMapResult[material1]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha1, surfaceVertex2Alpha0);
surfacePatchMapResult[material2]->addTriangle(surfaceVertex0Alpha0, surfaceVertex1Alpha0, surfaceVertex2Alpha1);
}
}*/
}//For each triangle
}//For each cell
//FIXME - can it happen that we have no vertices or triangles? Should exit early?
//for(std::map<uint8_t, IndexedSurfacePatch*>::iterator iterPatch = surfacePatchMapResult.begin(); iterPatch != surfacePatchMapResult.end(); ++iterPatch)
{
std::vector<SurfaceVertex>::iterator iterSurfaceVertex = singleMaterialPatch->m_vecVertices.begin();
while(iterSurfaceVertex != singleMaterialPatch->m_vecVertices.end())
{
Vector3DFloat tempNormal = computeNormal(static_cast<Vector3DFloat>(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE);
const_cast<SurfaceVertex&>(*iterSurfaceVertex).setNormal(tempNormal);
++iterSurfaceVertex;
}
iterSurfaceVertex = multiMaterialPatch->m_vecVertices.begin();
while(iterSurfaceVertex != multiMaterialPatch->m_vecVertices.end())
{
Vector3DFloat tempNormal = computeNormal(static_cast<Vector3DFloat>(iterSurfaceVertex->getPosition() + offset), CENTRAL_DIFFERENCE);
const_cast<SurfaceVertex&>(*iterSurfaceVertex).setNormal(tempNormal);
++iterSurfaceVertex;
}
uint16_t noOfRemovedVertices = 0;
//do
{
//noOfRemovedVertices = iterPatch->second.decimate();
}
//while(noOfRemovedVertices > 10); //We don't worry about the last few vertices - it's not worth the overhead of calling the function.
}
//return singleMaterialPatch;
}
Vector3DFloat PolyVoxSceneManager::computeNormal(const Vector3DFloat& position, NormalGenerationMethod normalGenerationMethod) const
{
VolumeIterator<boost::uint8_t> volIter(*volumeData); //FIXME - save this somewhere - could be expensive to create?
const float posX = position.x();
const float posY = position.y();
const float posZ = position.z();
const uint16_t floorX = static_cast<uint16_t>(posX);
const uint16_t floorY = static_cast<uint16_t>(posY);
const uint16_t floorZ = static_cast<uint16_t>(posZ);
Vector3DFloat result;
if(normalGenerationMethod == SOBEL)
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
const Vector3DFloat gradFloor = computeSobelGradient(volIter);
if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX+1.0),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
}
if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY+1.0),static_cast<uint16_t>(posZ));
}
if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ+1.0));
}
const Vector3DFloat gradCeil = computeSobelGradient(volIter);
result = ((gradFloor + gradCeil) * -1.0);
if(result.lengthSquared() < 0.0001)
{
//Operation failed - fall back on simple gradient estimation
normalGenerationMethod = SIMPLE;
}
}
if(normalGenerationMethod == CENTRAL_DIFFERENCE)
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
const Vector3DFloat gradFloor = computeCentralDifferenceGradient(volIter);
if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX+1.0),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
}
if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY+1.0),static_cast<uint16_t>(posZ));
}
if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ+1.0));
}
const Vector3DFloat gradCeil = computeCentralDifferenceGradient(volIter);
result = ((gradFloor + gradCeil) * -1.0);
if(result.lengthSquared() < 0.0001)
{
//Operation failed - fall back on simple gradient estimation
normalGenerationMethod = SIMPLE;
}
}
if(normalGenerationMethod == SIMPLE)
{
volIter.setPosition(static_cast<uint16_t>(posX),static_cast<uint16_t>(posY),static_cast<uint16_t>(posZ));
const uint8_t uFloor = volIter.getVoxel() > 0 ? 1 : 0;
if((posX - floorX) > 0.25) //The result should be 0.0 or 0.5
{
uint8_t uCeil = volIter.peekVoxel1px0py0pz() > 0 ? 1 : 0;
result = Vector3DFloat(uFloor - uCeil,0.0,0.0);
}
else if((posY - floorY) > 0.25) //The result should be 0.0 or 0.5
{
uint8_t uCeil = volIter.peekVoxel0px1py0pz() > 0 ? 1 : 0;
result = Vector3DFloat(0.0,uFloor - uCeil,0.0);
}
else if((posZ - floorZ) > 0.25) //The result should be 0.0 or 0.5
{
uint8_t uCeil = volIter.peekVoxel0px0py1pz() > 0 ? 1 : 0;
result = Vector3DFloat(0.0, 0.0,uFloor - uCeil);
}
}
return result;
}
void PolyVoxSceneManager::markVoxelChanged(uint16_t x, uint16_t y, uint16_t z)
{
//If we are not on a boundary, just mark one region.
if((x % POLYVOX_REGION_SIDE_LENGTH != 0) &&
(x % POLYVOX_REGION_SIDE_LENGTH != POLYVOX_REGION_SIDE_LENGTH-1) &&
(y % POLYVOX_REGION_SIDE_LENGTH != 0) &&
(y % POLYVOX_REGION_SIDE_LENGTH != POLYVOX_REGION_SIDE_LENGTH-1) &&
(z % POLYVOX_REGION_SIDE_LENGTH != 0) &&
(z % POLYVOX_REGION_SIDE_LENGTH != POLYVOX_REGION_SIDE_LENGTH-1))
{
surfaceUpToDate[x >> POLYVOX_REGION_SIDE_LENGTH_POWER][y >> POLYVOX_REGION_SIDE_LENGTH_POWER][z >> POLYVOX_REGION_SIDE_LENGTH_POWER] = false;
}
else //Mark surrounding block as well
{
const uint16_t regionX = x >> POLYVOX_REGION_SIDE_LENGTH_POWER;
const uint16_t regionY = y >> POLYVOX_REGION_SIDE_LENGTH_POWER;
const uint16_t regionZ = z >> POLYVOX_REGION_SIDE_LENGTH_POWER;
const uint16_t minRegionX = (std::max)(uint16_t(0),uint16_t(regionX-1));
const uint16_t minRegionY = (std::max)(uint16_t(0),uint16_t(regionY-1));
const uint16_t minRegionZ = (std::max)(uint16_t(0),uint16_t(regionZ-1));
const uint16_t maxRegionX = (std::min)(uint16_t(POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS-1),uint16_t(regionX+1));
const uint16_t maxRegionY = (std::min)(uint16_t(POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS-1),uint16_t(regionY+1));
const uint16_t maxRegionZ = (std::min)(uint16_t(POLYVOX_VOLUME_SIDE_LENGTH_IN_REGIONS-1),uint16_t(regionZ+1));
for(uint16_t zCt = minRegionZ; zCt <= maxRegionZ; zCt++)
{
for(uint16_t yCt = minRegionY; yCt <= maxRegionY; yCt++)
{
for(uint16_t xCt = minRegionX; xCt <= maxRegionX; xCt++)
{
surfaceUpToDate[xCt][yCt][zCt] = false;
}
}
}
}
}
void PolyVoxSceneManager::markRegionChanged(uint16_t firstX, uint16_t firstY, uint16_t firstZ, uint16_t lastX, uint16_t lastY, uint16_t lastZ)
{
const uint16_t firstRegionX = firstX >> POLYVOX_REGION_SIDE_LENGTH_POWER;
const uint16_t firstRegionY = firstY >> POLYVOX_REGION_SIDE_LENGTH_POWER;
const uint16_t firstRegionZ = firstZ >> POLYVOX_REGION_SIDE_LENGTH_POWER;
const uint16_t lastRegionX = lastX >> POLYVOX_REGION_SIDE_LENGTH_POWER;
const uint16_t lastRegionY = lastY >> POLYVOX_REGION_SIDE_LENGTH_POWER;
const uint16_t lastRegionZ = lastZ >> POLYVOX_REGION_SIDE_LENGTH_POWER;
for(uint16_t zCt = firstRegionZ; zCt <= lastRegionZ; zCt++)
{
for(uint16_t yCt = firstRegionY; yCt <= lastRegionY; yCt++)
{
for(uint16_t xCt = firstRegionX; xCt <= lastRegionX; xCt++)
{
surfaceUpToDate[xCt][yCt][zCt] = false;
}
}
}
}
uint16_t PolyVoxSceneManager::getSideLength(void)
{
return POLYVOX_VOLUME_SIDE_LENGTH;
}
uint8_t PolyVoxSceneManager::getMaterialIndexAt(uint16_t uX, uint16_t uY, uint16_t uZ)
{
if(volumeData->containsPoint(Vector3DInt32(uX,uY,uZ),0))
{
VolumeIterator<boost::uint8_t> volIter(*volumeData);
volIter.setPosition(uX,uY,uZ);
return volIter.getVoxel();
}
else
{
return 0;
}
}
void PolyVoxSceneManager::setNormalGenerationMethod(NormalGenerationMethod method)
{
m_normalGenerationMethod = method;
}
bool PolyVoxSceneManager::containsPoint(Vector3DFloat pos, float boundary)
{
return volumeData->containsPoint(pos, boundary);
}
bool PolyVoxSceneManager::containsPoint(Vector3DInt32 pos, uint16_t boundary)
{
return volumeData->containsPoint(pos, boundary);
}
/*
void PolyVoxSceneManager::setAxisVisible(bool visible)
{
if(m_axisNode)
m_axisNode->setVisible(visible);
}*/
}